ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (60)
  • 1990-1994  (35)
  • 1980-1984  (25)
  • 1955-1959
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2013-08-31
    Description: The presence of perovskite (CATiO3) and hibonite (Ca Al12O19) within different regions of Calcium-, Aluminum-rich Inclusions (CAI) and the trace element concentrations of these minerals in each circumstance, constrain models of precursor formation, nebular condensation, the thermal history of inclusions with relict perovskite and hibonite, and the formation of the Wark-Lovering rim. At present mineral/melt partition coefficient data for hibonite are limited to a few elements in simple experimental systems, or to those derived from hibonite-glass pairs in hibonite/glass microspherules. Similarly, there is only limited data on perovskite D that are applicable to meteorite compositions. Apart from the importance of partitioning studies to meteorite research, D values also are invaluable in the development of thermodynamic models, especially when data is available for a large number of elements that have different ionic charge and radii. In addition, study of the effect of rapid cooling on partitioning is crucial to our understanding of meteorite inclusions. To expand our knowledge of mineral/melt D for perovskite and hibonite, a study was instituted where D values are obtained in both equilibrium and dynamic cooling experiments. As an initial phase of this study mineral/melt D was measured for major elements (Ca, Mg, Al, Ti, and Si), 15 rare earth elements (La-Lu) and 8 other elements (Ba, Sr, U, Th, Nb, Zr, Hf, and Ge) in perovskite and hibonite grown under equilibrium conditions, in bulk compositions that are respectively similar to Compact Type A (CTA) CAI and to a hibonite/glass microspherule. Experimental mixes were doped with REE at 20-50x chondritic (ch) abundances, Ba at 50 ppm, Sr, Hf, Nb, and Zr at 100 ppm and, U and Th at 200 ppm. Trace element abundances were measured with the PANURGE ion microprobe. Major element compositions were obtained by electron microprobe analysis.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 793-794
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Studies of individual presolar SiC grains have shown that most are enriched in Si-29, Si-30, and C-13, and depleted in N-15, compared to solar-system abundances and that many have large excesses of Mg-26, most plausibly from in situ decay of Al-26. Stone et al., observed that Si from a family of platy SiC grains define a linear array on a 3-isotope plot that does not pass through normal solar-system Si. In contrast, Si-isotope data from over 100 3-4 micron SiC grains from Murchison from an elongate ellipse enclosing the Stone et al. linear array but also including 'normal' solar-system Si. To investigate whether this difference in Si isotopes indicates different populations of SiC in the two meteorites and to improve the characterization of Orgueil SiC, we used the PANURGE ion microprobe to measure Si, C, N, and Mg isotopes and Al and Na concentrations in a suite of 2-5 micron SiC grains from a new sample of Orgueil.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 687-688
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-18
    Description: Abundances of the titanium isotopes were determined using a new high-precision technique that shows terrestrial, lunar, and bulk meteorite samples to be indistinguishable. Ca-Al-Ti-rich inclusions in the Allende meteorite are found to contain Ti of widely varying isotopic composition reflecting the presence of at least three nucleosynthetic components. The anomalies in Ti appear to be relatively widespread and, when correlated with Ca data, provide a clue to nucleosynthesis in the neighborhood of the iron peak and to the late-stage nucleosynthetic processes which immediately preceded formation of the solar nebula.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Astrophysical Journal; vol. 240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: The discovery in chondritic meteorites of diamond, SiC, and poorly crystallized graphite that formed around other stars demonstrated conclusively that presolar dust survived the formation of the solar system to be incorporated into meteorites. The presolar nature of these grains is shown by the highly unusual isotopic compositions of their constituent elements. To date, all recognized types of presolar grains have been carbon rich and apparently formed around carbon stars, those with C/O greater than 1. The discovery of the first oxygen-rich grain with isotopic characteristics consistent with a presolar origin is reported. Oxygen-rich grains presumably form only around stars with C/O less than 1.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-Third Lunar and Planetary Science Conference; p 29-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: We present a model of the steady-state transport assuming three reservoirs: a lower mantle (P) with a relatively undepleted inventory of U, Th, Pu, I, He, Ne, Xe, Ar; an upper mantle that has been extensively outgassed (D); and the atmosphere. There is mass transport at a rate M(sub PD) by plumes from the lower mantle, a fraction of which is outgassed directly into the atmosphere, while the remainder feeds matter and associated nuclei into D. D is well outgassed at spreading centers and has material containing atmospheric gases added to it by subduction. In the case of He, there is no subduction component. The approach follows the treatment of Kellogg and Wasserburg. A summary of the pertinent equations and constraints was reported earlier. The U, Th and Pu in P are estimated for Earth models from refractory element abundances in meteorites. In this model the inventory of rare gases in D is governed by the simple mixing of components from P (both radiogenic and original) with distinctive atmospheric components. In addition, alpha decay and spontaneous fission of U, and (alpha, n) reaction on oxygen from energetic alpha particles produce radiogenic/nuclear daughter products in D. These include (4)He, (136)Xe and (21)Ne. (40)K in D generates excess radiogenic (40)Ar.
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Conference on Deep Earth and Planetary Volatiles; p 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-25
    Description: A model for He and Xe was presented previously which incorporates mass transfer of rare gases from an undegassed lower mantle (P) and the atmosphere into a degassed upper mantle (D). We extend the model to include Ne and Ar. Model constraints on rare gas relative abundances within P are derived. Discussions of terrestrial volatile acquisition have focused on the rare gas abundance pattern of the atmosphere relative to meteoritic components, and the pattern of rare gases still trapped in the Ear,th is important in identifying volatile capture and loss processes operating during Earth formation. The assumptions and principles of the model are discussed in Wasserburg and Porcelli (this volume). For P, the concentrations in P of the decay/nuclear products 4 He, 21 Ne, 40 Ar, and 136 Xe can be calculated from the concentrations of the parent elements U, Th, K, and Pu. The total concentration of the daughter element in P is proportional to the isotopic shifts in P. For Ar, ((40)Ar/(36)Ar)p - ((40)Ar/(36)Ar)o =Delta (exp 40) p= 40 Cp/(exp 36)C where(i)C(sub j) the concentration of isotope i in j. In D, isotope compositions are the result of mixing rare gases from P, decay/nuclear products generated in the upper mantle, and subducted rare gases (for Ar and Xe).
    Keywords: GEOPHYSICS
    Type: Lunar and Planetary Inst., Conference on Deep Earth and Planetary Volatiles; p 37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-25
    Description: The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.
    Keywords: SOLAR PHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1487-1488
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: We report on the isotopic composition of Pb and the concentration of Pb, U, and Th in a sample of LEW88516 (LEW). LEW was a 13-g stone recovered from Antarctica and was classified as a new member of the Shergottite group. This work was undertaken with the hope that LEW might yield new information to elucidate further the origin and evolution of Shergottites and other SNC meteorites. We have previously studied U-Th-Pb in other Shergottites, namely Shergotty, Zagami, EETA79001, and ALHA77005, as well as Nakhla. The results indicate that the initial leads of these Shergottites were well defined, were distinct from each other, and have high Pb-204/Pb-206 (from 0.0652 to 0.0739). These leads evolved in different reservoirs over most of solar system history in a low U-238/Pb-204(micro) is approximately equal to 5 environment. The U-Th-Pb isotopic systems are quite regular, which unambiguously indicates an event of U-Th-Pb fractionation at approximately 200 m.y. The details of the data arrays are complex. The young age is in general agreement with some of the ages obtained by other methods, but precise concordance between the different methods is not established. The new results on LEW are remarkably similar to those of ALHA77005 and support the other observations based on the mineralogy, petrology, and bulk composition. The clear distinction between the Shergottites and Nakhla is confirmed. We consider that the Shergottites and possibly all the SNC's were derived from an impact on the regolith of a differentiated terrestrial type planetary body (Mars?) with a high content of volatiles as compared to the earth.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 275-276
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-25
    Description: Chemical equilibria in stellar atmospheres have been investigated by many authors. Lattimer, Schramm, and Grossman presented calculations in both O rich and C rich environments and predicted possible presolar condensates. A recent paper by Cherchneff and Barker considered a C rich composition with PAH's included in the calculations. However, the condensation sequences of C bearing species have not been investigated in detail. In a carbon rich gas surrounding an AGB star, it is often assumed that graphite (or diamond) condenses out before TiC and SiC. However, Lattimer et al. found some conditions under which TiC condenses before graphite. We have performed molecular equilibrium calculations to establish the stability fields of C(s), TiC(s), and SiC(s) and other high temperature phases under conditions of different pressures and C/O. The preserved presolar interstellar dust grains so far discovered in meteorites are graphite, diamond, SiC, TiC, and possibly Al2O3.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1281-1282
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-25
    Description: We present new analyses of Th-232/U-238 in CI and CM meteorites. The relative abundance of these nuclides is important in estimates of the age of r-process elements. The cosmochronology based upon the Th-232/U-238 ratio (kappa) depends on the precise determinations of these two different elements in meteorites and on the production ratios. Both parameters are subject to substantial errors. Recent recalculations of this chronology have used selected values from compilations but do not adequately address the errors in terms of a reliable data base. Morgan and Lovering provided extensive neutron activation analyses for ordinary chondrites which yield an average kappa of 3.6 +/- 0.4. Their work on carbonaceous chondrites showed a wide range in kappa from 2 to 6. More recent investigations by isotopic dilution have established the following: (1) highly variable kappa from 2.7 to 11 in Allende Ca-Al-rich inclusions and a value of 3.6 in the Orgueil CI1 chondrite; (2) a range from 2.71 to 6.63 for 7 L-type chondrites and a range from 2.7 to 4.4 for 6 L, H, and LL chondrites. A further investigation of this subject matter is presented.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 277-278
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...