ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (188)
  • Binding Sites  (108)
  • American Association for the Advancement of Science (AAAS)  (286)
  • 1990-1994  (229)
  • 1980-1984  (57)
  • 1955-1959
  • 1945-1949
  • 1925-1929
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (286)
Years
Year
  • 1
    Publication Date: 1991-12-20
    Description: The human immunodeficiency virus-1 (HIV-1) trans-activator Tat is an attractive target for the development of antiviral drugs because inhibition of Tat would arrest the virus at an early stage. The drug Ro 5-3335 [7-chloro-5-(2-pyrryl)-3H-1,4-benzodiazepine-2(H)-one], inhibited gene expression by HIV-1 at the level of transcriptional trans-activation by Tat. The compound did not inhibit the basal activity of the promoter. Both Tat and its target sequence TAR were required for the observed inhibitory activity. Ro 5-3335 reduced the amount of cell-associated viral RNA and antigen in acutely, as well as in chronically infected cells in vitro (median inhibition concentration 0.1 to 1 micromolar). Effective inhibition of viral replication was also observed 24 hours after cells were transfected with infectious recombinant HIV-1 DNA. The compound was active against both HIV-1 and HIV-2 and against 3'-azido-3'-deoxythymidine (AZT)-resistant clinical isolates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, M C -- Schutt, A D -- Holly, M -- Slice, L W -- Sherman, M I -- Richman, D D -- Potash, M J -- Volsky, D J -- AI 27397/AI/NIAID NIH HHS/ -- AI 27670/AI/NIAID NIH HHS/ -- AI 29164/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1799-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Hoffmann-La Roche, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763331" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents/*pharmacology ; Benzodiazepinones/*pharmacology ; Cell Line ; Gene Products, tat/*antagonists & inhibitors ; HIV Long Terminal Repeat/drug effects ; HIV-1/drug effects/genetics/*physiology ; HIV-2/drug effects/*physiology ; Humans ; Kinetics ; Promoter Regions, Genetic/drug effects ; Pyrroles/*pharmacology ; Virus Replication/*drug effects ; Zidovudine/pharmacology ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-05-25
    Description: An active site, cofactor-containing peptide has been obtained in high yield from bovine serum amine oxidase. Sequencing of this pentapeptide indicates: Leu-Asn-X-Asp-Tyr. Analysis of the peptide by mass spectrometry, ultraviolet-visible spectroscopy, and proton nuclear magnetic resonance leads to the identification of X as 6-hydroxydopa. This result indicates that, contrary to previous proposals, pyrroloquinoline quinone is not the active site cofactor in mammalian copper amine oxidases. Although 6-hydroxydopa has been implicated in neurotoxicity, the data presented suggest that this compound has a functional role at an enzyme active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janes, S M -- Mu, D -- Wemmer, D -- Smith, A J -- Kaur, S -- Maltby, D -- Burlingame, A L -- Klinman, J P -- GM 39296/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):981-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2111581" target="_blank"〉PubMed〈/a〉
    Keywords: *Amine Oxidase (Copper-Containing) ; Amino Acid Sequence ; Animals ; Binding Sites ; Cattle ; Copper ; Dihydroxyphenylalanine/*analogs & derivatives/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Molecular Sequence Data ; Oxidoreductases/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/blood/*metabolism ; Peptide Fragments/analysis/chemical synthesis ; Quinones/metabolism ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-11-22
    Description: Three spatially distant surface loops were found to mediate the interaction of the coagulation protein factor X with the leukocyte integrin Mac-1. This interacting region, which by computational modeling defines a three-dimensional macromotif in the catalytic domain, was also recognized by glycoprotein C (gC), a factor X receptor expressed on herpes simplex virus (HSV)-infected endothelial cells. Peptidyl mimicry of each loop inhibited factor X binding to Mac-1 and gC, blocked monocyte generation of thrombin, and prevented monocyte adhesion to HSV-infected endothelium. These data link the ligand recognition of Mac-1 to established mechanisms of receptor-mediated vascular injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altieri, D C -- Etingin, O R -- Fair, D S -- Brunck, T K -- Geltosky, J E -- Hajjar, D P -- Edgington, T S -- HL 46408/HL/NHLBI NIH HHS/ -- P01 HL 16411/HL/NHLBI NIH HHS/ -- R01 HL 43773/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Nov 22;254(5035):1200-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1957171" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding, Competitive ; Cell Line ; Factor X/*metabolism/ultrastructure ; Humans ; In Vitro Techniques ; Ligands ; Macrophage-1 Antigen/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry/metabolism ; Protein Conformation ; Viral Envelope Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-02-07
    Description: The 39- to 43-amino acid amyloid beta protein (beta AP), which is deposited as amyloid in Alzheimer's disease, is encoded as an internal peptide that begins 99 residues from the carboxyl terminus of a 695- to 770-amino acid glycoprotein referred to as the amyloid beta protein precursor (beta APP). To clarify the processing that produces amyloid, carboxyl-terminal derivatives of the beta APP were analyzed. This analysis showed that the beta APP is normally processed into a complex set of 8- to 12-kilodalton carboxyl-terminal derivatives. The two largest derivatives in human brain have the entire beta AP at or near their amino terminus and are likely to be intermediates in the pathway leading to amyloid deposition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Estus, S -- Golde, T E -- Kunishita, T -- Blades, D -- Lowery, D -- Eisen, M -- Usiak, M -- Qu, X M -- Tabira, T -- Greenberg, B D -- AG06656/AG/NIA NIH HHS/ -- AG08012/AG/NIA NIH HHS/ -- AG08992/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 7;255(5045):726-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuropathology, Case Western Reserve University, Cleveland, OH 44106.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1738846" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*biosynthesis ; Amyloid beta-Protein Precursor/chemistry/genetics/*metabolism ; Cell Line ; Cell Membrane/chemistry ; Cerebral Cortex/chemistry ; Glycosylation ; Humans ; Immunoblotting ; Immunosorbent Techniques ; Molecular Weight ; Peptide Fragments/chemistry/isolation & purification/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-08-03
    Description: A two-fold (C2) symmetric inhibitor of the protease of human immunodeficiency virus type-1 (HIV-1) has been designed on the basis of the three-dimensional symmetry of the enzyme active site. The symmetric molecule inhibited both protease activity and acute HIV-1 infection in vitro, was at least 10,000-fold more potent against HIV-1 protease than against related enzymes, and appeared to be stable to degradative enzymes. The 2.8 angstrom crystal structure of the inhibitor-enzyme complex demonstrated that the inhibitor binds to the enzyme in a highly symmetric fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, J -- Neidhart, D J -- VanDrie, J -- Kempf, D J -- Wang, X C -- Norbeck, D W -- Plattner, J J -- Rittenhouse, J W -- Turon, M -- Wideburg, N -- AI 27220/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):527-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer-Assisted Molecular Design, Abbott Laboratories, Abbott Park, IL 60064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2200122" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Drug Design ; Endopeptidases/*metabolism ; Gene Products, pol/*metabolism ; HIV Protease ; HIV-1/*enzymology ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Protease Inhibitors/*pharmacology ; Protein Conformation ; Sugar Alcohols/*pharmacology ; Valine/*analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-01-29
    Description: The phosphocarrier protein IIIGlc is an integral component of the bacterial phosphotransferase (PTS) system. Unphosphorylated IIIGlc inhibits non-PTS carbohydrate transport systems by binding to diverse target proteins. The crystal structure at 2.6 A resolution of one of the targets, glycerol kinase (GK), in complex with unphosphorylated IIIGlc, glycerol, and adenosine diphosphate was determined. GK contains a region that is topologically identical to the adenosine triphosphate binding domains of hexokinase, the 70-kD heat shock cognate, and actin. IIIGlc binds far from the catalytic site of GK, indicating that long-range conformational changes mediate the inhibition of GK by IIIGlc. GK and IIIGlc are bound by hydrophobic and electrostatic interactions, with only one hydrogen bond involving an uncharged group. The phosphorylation site of IIIGlc, His90, is buried in a hydrophobic environment formed by the active site region of IIIGlc and a 3(10) helix of GK, suggesting that phosphorylation prevents IIIGlc binding to GK by directly disrupting protein-protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Faber, H R -- Worthylake, D -- Meadow, N D -- Roseman, S -- Pettigrew, D W -- Remington, S J -- 5-R37 GM38759/GM/NIGMS NIH HHS/ -- GM 42618-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):673-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430315" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology ; Escherichia coli Proteins ; Glycerol Kinase/*chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Models, Structural ; Phosphoenolpyruvate Sugar Phosphotransferase System/*chemistry/*metabolism ; *Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-08-27
    Description: Better characterization of human immunodeficiency virus-type 1 (HIV-1) in patients with primary infection has important implications for the development of an acquired immunodeficiency syndrome (AIDS) vaccine because vaccine strategies should target viral isolates with the properties of transmitted viruses. In five HIV-1 seroconverters, the viral phenotype was found to be uniformly macrophage-tropic and non-syncytium-inducing. Furthermore, the viruses were genotypically homogeneous within each patient, but a common signature sequence was not discernible among transmitted viruses. In the two cases where the sexual partners were also studied, the sequences of the transmitted viruses matched best with minor variants in the blood of the transmitters. There was also a stronger pressure to conserve sequences in gp120 than in gp41, nef, and p17, suggesting that a selective mechanism is involved in transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, T -- Mo, H -- Wang, N -- Nam, D S -- Cao, Y -- Koup, R A -- Ho, D D -- AI24030/AI/NIAID NIH HHS/ -- AI25541/AI/NIAID NIH HHS/ -- AI27742/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Aug 27;261(5125):1179-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, New York University School of Medicine, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8356453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Female ; Gene Products, gag/chemistry/genetics ; Genes, Viral ; Genotype ; Giant Cells/physiology ; HIV Antigens/chemistry/genetics ; HIV Envelope Protein gp120/chemistry/*genetics ; HIV Envelope Protein gp41/chemistry/genetics ; HIV Infections/*microbiology/transmission ; HIV Seropositivity/microbiology ; HIV-1/chemistry/*genetics/*physiology ; Humans ; Macrophages ; Male ; Molecular Sequence Data ; Phenotype ; Sequence Alignment ; Sexual Partners ; *Viral Proteins ; Virus Replication ; gag Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-07-16
    Description: The cytoplasmic tyrosine kinase, Bruton's tyrosine kinase (Btk, formerly bpk or atk), is crucial for B cell development. Loss of kinase activity results in the human immunodeficiency, X-linked agammaglobulinemia, characterized by a failure to produce B cells. In the murine X-linked immunodeficiency (XID), B cells are present but respond abnormally to activating signals. The Btk gene, btk, was mapped to the xid region of the mouse X chromosome by interspecific backcross analysis. A single conserved residue within the amino terminal unique region of Btk was mutated in XID mice. This change in xid probably interferes with normal B cell signaling mediated by Btk protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rawlings, D J -- Saffran, D C -- Tsukada, S -- Largaespada, D A -- Grimaldi, J C -- Cohen, L -- Mohr, R N -- Bazan, J F -- Howard, M -- Copeland, N G -- AR36834/AR/NIAMS NIH HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):358-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332901" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/*enzymology/immunology ; Base Sequence ; Cell Line ; Chromosome Mapping ; Crosses, Genetic ; Exons ; Female ; Genetic Linkage ; Immunologic Deficiency Syndromes/enzymology/*genetics/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Mice, Inbred DBA ; Mice, Mutant Strains ; Molecular Sequence Data ; Protein-Tyrosine Kinases/chemistry/*genetics/metabolism ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-07-27
    Description: The major autophosphorylation sites of the rat beta II isozyme of protein kinase C were identified. The modified threonine and serine residues were found in the amino-terminal peptide, the carboxyl-terminal tail, and the hinge region between the regulatory lipid-binding domain and the catalytic kinase domain. Because this autophosphorylation follows an intrapeptide mechanism, extraordinary flexibility of the protein is necessary to phosphorylate the three regions. Comparison of the sequences surrounding the modified residues showed no obvious recognition motif nor any similarity to substrate phosphorylation sites, suggesting that proximity to the active site may be the primary criterion for their phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flint, A J -- Paladini, R D -- Koshland, D E Jr -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 27;249(4967):408-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2377895" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Cloning, Molecular ; Isoenzymes/genetics/*metabolism ; Molecular Sequence Data ; Peptide Fragments/isolation & purification/metabolism ; Phosphorylation ; Protein Conformation ; Protein Kinase C/genetics/*metabolism ; Rats ; Recombinant Proteins/metabolism ; Signal Transduction ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-08-03
    Description: Phosphoenolpyruvate carboxykinase (PEPCK) governs the rate-limiting step in gluconeogenesis. Glucocorticoids and adenosine 3',5'-monophosphate (cAMP) increase PEPCK gene transcription and gluconeogenesis, whereas insulin has the opposite effect. Insulin is dominant, since it prevents cAMP and glucocorticoid-stimulated transcription. Glucocorticoid and cAMP response elements have been located in the PEPCK gene and now a 15-base pair insulin-responsive sequence (IRS) is described. Evidence for a binding activity that recognizes this sequence is presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, R M -- Lucas, P C -- Forest, C D -- Magnuson, M A -- Granner, D K -- DK 20593/DK/NIDDK NIH HHS/ -- DK 35107/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):533-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232-0615.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2166335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Cyclic AMP/analogs & derivatives/physiology ; Dexamethasone/pharmacology ; *Genes, Regulator ; Insulin/*pharmacology ; Molecular Sequence Data ; Phosphoenolpyruvate Carboxykinase (GTP)/*genetics/metabolism ; RNA, Messenger/drug effects/genetics ; Recombinant Fusion Proteins/metabolism ; Thionucleotides ; Transcription, Genetic/*drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...