ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rats  (286)
  • Models, Molecular  (87)
  • American Association for the Advancement of Science (AAAS)  (372)
  • 1990-1994  (176)
  • 1980-1984  (196)
  • 1955-1959
  • 1945-1949
  • 1935-1939
  • 1925-1929
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (372)
Years
Year
  • 1
    Publication Date: 1990-01-12
    Description: Individual neurons in the brain send their axons over considerable distances to multiple targets, but the mechanisms governing this process are unresolved. An amenable system for studying axon outgrowth, branching, and target selection is the mammalian corticopontine projection. This major connection develops from parent corticospinal axons that have already grown past the pons, by a delayed interstitial budding of collateral branches that then grow directly into their target, the basilar pons. When cocultured with explants of developing cortex in three-dimensional collagen matrices, the basilar pons elicits the formation and directional growth of cortical axon collaterals across the intervening matrix. This effect appears to be target-specific and selectively influences neurons in the appropriate cortical layer. These in vitro findings provide evidence that the basilar pons becomes innervated by controlling at a distance the budding and directed ingrowth of cortical axon collaterals through the release of a diffusible, chemotropic molecule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heffner, C D -- Lumsden, A G -- O'Leary, D D -- EY07025/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jan 12;247(4939):217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294603" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/ultrastructure ; Cerebral Cortex/growth & development/*ultrastructure ; Culture Techniques ; Fluorescent Dyes ; Motor Cortex/ultrastructure ; Nerve Growth Factors/physiology ; Neural Pathways/growth & development/ultrastructure ; Pons/*physiology/ultrastructure ; Rats ; Spinal Cord/ultrastructure ; Visual Cortex/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-11-22
    Description: Three spatially distant surface loops were found to mediate the interaction of the coagulation protein factor X with the leukocyte integrin Mac-1. This interacting region, which by computational modeling defines a three-dimensional macromotif in the catalytic domain, was also recognized by glycoprotein C (gC), a factor X receptor expressed on herpes simplex virus (HSV)-infected endothelial cells. Peptidyl mimicry of each loop inhibited factor X binding to Mac-1 and gC, blocked monocyte generation of thrombin, and prevented monocyte adhesion to HSV-infected endothelium. These data link the ligand recognition of Mac-1 to established mechanisms of receptor-mediated vascular injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altieri, D C -- Etingin, O R -- Fair, D S -- Brunck, T K -- Geltosky, J E -- Hajjar, D P -- Edgington, T S -- HL 46408/HL/NHLBI NIH HHS/ -- P01 HL 16411/HL/NHLBI NIH HHS/ -- R01 HL 43773/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Nov 22;254(5035):1200-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1957171" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding, Competitive ; Cell Line ; Factor X/*metabolism/ultrastructure ; Humans ; In Vitro Techniques ; Ligands ; Macrophage-1 Antigen/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry/metabolism ; Protein Conformation ; Viral Envelope Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-08-03
    Description: A two-fold (C2) symmetric inhibitor of the protease of human immunodeficiency virus type-1 (HIV-1) has been designed on the basis of the three-dimensional symmetry of the enzyme active site. The symmetric molecule inhibited both protease activity and acute HIV-1 infection in vitro, was at least 10,000-fold more potent against HIV-1 protease than against related enzymes, and appeared to be stable to degradative enzymes. The 2.8 angstrom crystal structure of the inhibitor-enzyme complex demonstrated that the inhibitor binds to the enzyme in a highly symmetric fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, J -- Neidhart, D J -- VanDrie, J -- Kempf, D J -- Wang, X C -- Norbeck, D W -- Plattner, J J -- Rittenhouse, J W -- Turon, M -- Wideburg, N -- AI 27220/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):527-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer-Assisted Molecular Design, Abbott Laboratories, Abbott Park, IL 60064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2200122" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Drug Design ; Endopeptidases/*metabolism ; Gene Products, pol/*metabolism ; HIV Protease ; HIV-1/*enzymology ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Protease Inhibitors/*pharmacology ; Protein Conformation ; Sugar Alcohols/*pharmacology ; Valine/*analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-01-29
    Description: The phosphocarrier protein IIIGlc is an integral component of the bacterial phosphotransferase (PTS) system. Unphosphorylated IIIGlc inhibits non-PTS carbohydrate transport systems by binding to diverse target proteins. The crystal structure at 2.6 A resolution of one of the targets, glycerol kinase (GK), in complex with unphosphorylated IIIGlc, glycerol, and adenosine diphosphate was determined. GK contains a region that is topologically identical to the adenosine triphosphate binding domains of hexokinase, the 70-kD heat shock cognate, and actin. IIIGlc binds far from the catalytic site of GK, indicating that long-range conformational changes mediate the inhibition of GK by IIIGlc. GK and IIIGlc are bound by hydrophobic and electrostatic interactions, with only one hydrogen bond involving an uncharged group. The phosphorylation site of IIIGlc, His90, is buried in a hydrophobic environment formed by the active site region of IIIGlc and a 3(10) helix of GK, suggesting that phosphorylation prevents IIIGlc binding to GK by directly disrupting protein-protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Faber, H R -- Worthylake, D -- Meadow, N D -- Roseman, S -- Pettigrew, D W -- Remington, S J -- 5-R37 GM38759/GM/NIGMS NIH HHS/ -- GM 42618-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jan 29;259(5095):673-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8430315" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology ; Escherichia coli Proteins ; Glycerol Kinase/*chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Models, Structural ; Phosphoenolpyruvate Sugar Phosphotransferase System/*chemistry/*metabolism ; *Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-12-17
    Description: Lysin, a protein from abalone sperm, creates a hole in the envelope of the egg, permitting the sperm to pass through the envelope and fuse with the egg. The structure of lysin, refined at 1.9 angstroms resolution, reveals an alpha-helical, amphipathic molecule. The surface of the protein exhibits three features: two tracks of basic residues that span the length of the molecule, a solvent-exposed cluster of aromatic and aliphatic amino acids, and an extended amino-terminal hypervariable domain that is species-specific. The structure suggests possible mechanisms of action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, A -- McRee, D E -- Vacquier, V D -- Stout, C D -- HD12986/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 17;262(5141):1864-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037-1093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266073" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Computer Graphics ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Mollusca ; Mucoproteins/*chemistry/metabolism ; Protein Structure, Secondary ; Vitelline Membrane/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-02-26
    Description: The x-ray crystal structure of a peptide designed to form a double-stranded parallel coiled coil shows that it is actually a triple-stranded coiled coil formed by three alpha-helices. Unlike the designed parallel coiled coil, the helices run up-up-down. The structure is stabilized by a distinctive hydrophobic interface consisting of eight layers. As in the design, each alpha-helix in the coiled coil contributes one leucine side chain to each layer. The structure suggests that hydrophobic interactions are a dominant factor in the stabilization of coiled coils. The stoichiometry and geometry of coiled coils are primarily determined by side chain packing in the solvent-inaccessible interior, but electrostatic interactions also contribute.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lovejoy, B -- Choe, S -- Cascio, D -- McRorie, D K -- DeGrado, W F -- Eisenberg, D -- 31299/PHS HHS/ -- New York, N.Y. -- Science. 1993 Feb 26;259(5099):1288-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles 90024-1570.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8446897" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography ; *DNA-Binding Proteins ; Fungal Proteins/chemistry/ultrastructure ; Hydrogen Bonding ; Leucine/chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry ; Protein Kinases/chemistry/ultrastructure ; *Protein Structure, Secondary ; *Saccharomyces cerevisiae Proteins ; Tropomyosin/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1984-06-08
    Description: Epidermal growth factor (EGF) is a potent mitogen with hormonal activity in the gastrointestinal tract. Material cross-reacting with EGF was detected in the central nervous system of the developing and adult albino rat by the indirect immunofluorescence technique. High concentrations of EGF-cross-reacting material were identified in forebrain and midbrain structures of pallidal areas of the brain. These include the globus pallidus, ventral pallidum, entopeduncular nucleus, substantia nigra pars reticulata, and the islands of Calleja . Thus, EGF may represent another gut-brain peptide with potential neurotransmitter-neuromodulator functions in pallidal structures of the extrapyramidal motor systems of the brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fallon, J H -- Seroogy, K B -- Loughlin, S E -- Morrison, R S -- Bradshaw, R A -- Knaver, D J -- Cunningham, D D -- GM31609/GM/NIGMS NIH HHS/ -- NS16017/NS/NINDS NIH HHS/ -- NS19964/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1984 Jun 8;224(4653):1107-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6144184" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/growth & development/*physiology ; Epidermal Growth Factor/*physiology ; Fluorescent Antibody Technique ; Globus Pallidus/physiology ; Mitogens/physiology ; Neurotransmitter Agents/physiology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1984-02-17
    Description: The effect of hypoxic exposure on various mitochondrial enzymes and on cell mitochondrial genomic content was studied in two types of mammalian cells. Hypoxia depressed the activity of six enzymes to the same degree. The kinetics of depression and of recovery during reexposure to normoxia were statistically similar for three marker enzymes. Despite the global and symmetrical decrease in enzyme activities, mitochondrial DNA remained constant. This suggests either symmetrical loss of mitochondrial enzymes from all mitochondria or complete loss of enzymes from a subpopulation of mitochondria with retention of an intact mitochondrial genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, B J -- Robin, E D -- Tapper, D P -- Wong, R J -- Clayton, D A -- 5 R01 HL23701-14/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1984 Feb 17;223(4637):707-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6320368" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Animals ; Anoxia/physiopathology ; Citrate (si)-Synthase/genetics/*metabolism ; DNA, Mitochondrial/*genetics ; Electron Transport Complex IV/genetics/*metabolism ; Macrophages/*enzymology ; Mice ; Mitochondria/*enzymology ; Mitochondria, Muscle/*enzymology ; Oxidoreductases/genetics/*metabolism ; Oxo-Acid-Lyases/*metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1981-04-03
    Description: Long-term infusion of glucose, beta-hydroxybutyrate, and glycerol into the third ventricle of the rat brain caused a stabilization of body weight at a lower than normal level. Among the glucose- and glycerol-treated animals this weight loss was caused in part by temporary hypophagia. Among the animals treated with beta-hydroxybutyrate the weight loss was unaccompanied by a reduction in food intake. The results are consistent with the view that the systems controlling food intake and body weight are sensitive to the availability of brain fuels. They are not consistent however, with the view that these control systems monitor calories independently of their source.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, J D -- Wirtshafter, D -- Asin, K E -- Brief, D -- AM 26030/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1981 Apr 3;212(4490):81-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7193909" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Hydroxybutyric Acid ; Animals ; *Appetite Regulation/drug effects ; *Body Weight/drug effects ; Brain/drug effects/*physiology ; Circadian Rhythm ; Drinking/drug effects ; *Eating/drug effects ; Glucose/*pharmacology ; Glycerol/*pharmacology ; Hydroxybutyrates/administration & dosage/*pharmacology ; Hypothalamus/drug effects ; Injections, Intraventricular ; Male ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1982-02-26
    Description: The glucagon analog [l-N alpha-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, D G -- Goebel, C U -- Hruby, V J -- Bregman, M D -- Trivedi, D -- AM21085/AM/NIADDK NIH HHS/ -- AM25318/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1982 Feb 26;215(4536):1115-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6278587" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diabetes Mellitus, Experimental/*drug therapy ; Glucagon/*analogs & derivatives/*antagonists & inhibitors/therapeutic use ; Hyperglycemia/*drug therapy ; Male ; Rats ; Receptors, Cell Surface/*drug effects ; Receptors, Glucagon ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...