ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kinetics  (144)
  • Structure-Activity Relationship
  • American Association for the Advancement of Science (AAAS)  (207)
  • Annual Reviews
  • 1990-1994  (112)
  • 1980-1984  (73)
  • 1975-1979  (22)
  • 1965-1969
  • 1935-1939
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 1991-12-20
    Description: The human immunodeficiency virus-1 (HIV-1) trans-activator Tat is an attractive target for the development of antiviral drugs because inhibition of Tat would arrest the virus at an early stage. The drug Ro 5-3335 [7-chloro-5-(2-pyrryl)-3H-1,4-benzodiazepine-2(H)-one], inhibited gene expression by HIV-1 at the level of transcriptional trans-activation by Tat. The compound did not inhibit the basal activity of the promoter. Both Tat and its target sequence TAR were required for the observed inhibitory activity. Ro 5-3335 reduced the amount of cell-associated viral RNA and antigen in acutely, as well as in chronically infected cells in vitro (median inhibition concentration 0.1 to 1 micromolar). Effective inhibition of viral replication was also observed 24 hours after cells were transfected with infectious recombinant HIV-1 DNA. The compound was active against both HIV-1 and HIV-2 and against 3'-azido-3'-deoxythymidine (AZT)-resistant clinical isolates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, M C -- Schutt, A D -- Holly, M -- Slice, L W -- Sherman, M I -- Richman, D D -- Potash, M J -- Volsky, D J -- AI 27397/AI/NIAID NIH HHS/ -- AI 27670/AI/NIAID NIH HHS/ -- AI 29164/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1799-802.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Hoffmann-La Roche, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763331" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents/*pharmacology ; Benzodiazepinones/*pharmacology ; Cell Line ; Gene Products, tat/*antagonists & inhibitors ; HIV Long Terminal Repeat/drug effects ; HIV-1/drug effects/genetics/*physiology ; HIV-2/drug effects/*physiology ; Humans ; Kinetics ; Promoter Regions, Genetic/drug effects ; Pyrroles/*pharmacology ; Virus Replication/*drug effects ; Zidovudine/pharmacology ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1981-12-04
    Description: Leucine catabolism is regulated by either of the first two degradative steps: (reversible) transamination to the keto acid or subsequent decarboxylation. A method is described to measure rates of leucine transamination, reamination, and keto acid oxidation. The method is applied directly to humans by infusing the nonradioactive tracer, L-[15N,1-13C]leucine. Leucine transamination was found to be operating several times faster than the keto acid decarboxylation and to be of equal magnitude in adult human males under two different dietary conditions, postabsorptive and fed. These results indicate that decarboxylation, not transamination, is the rate-limiting step in normal human leucine metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matthews, D E -- Bier, D M -- Rennie, M J -- Edwards, R H -- Halliday, D -- Millward, D J -- Clugston, G A -- AM-25994/AM/NIADDK NIH HHS/ -- HD-10667/HD/NICHD NIH HHS/ -- RR-00954/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1981 Dec 4;214(4525):1129-31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7302583" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Carbon Isotopes ; Humans ; Kinetics ; Leucine/*metabolism ; Male ; Models, Biological ; Nitrogen Isotopes ; Oxidation-Reduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-08-03
    Description: A two-fold (C2) symmetric inhibitor of the protease of human immunodeficiency virus type-1 (HIV-1) has been designed on the basis of the three-dimensional symmetry of the enzyme active site. The symmetric molecule inhibited both protease activity and acute HIV-1 infection in vitro, was at least 10,000-fold more potent against HIV-1 protease than against related enzymes, and appeared to be stable to degradative enzymes. The 2.8 angstrom crystal structure of the inhibitor-enzyme complex demonstrated that the inhibitor binds to the enzyme in a highly symmetric fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, J -- Neidhart, D J -- VanDrie, J -- Kempf, D J -- Wang, X C -- Norbeck, D W -- Plattner, J J -- Rittenhouse, J W -- Turon, M -- Wideburg, N -- AI 27220/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):527-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer-Assisted Molecular Design, Abbott Laboratories, Abbott Park, IL 60064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2200122" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Drug Design ; Endopeptidases/*metabolism ; Gene Products, pol/*metabolism ; HIV Protease ; HIV-1/*enzymology ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Protease Inhibitors/*pharmacology ; Protein Conformation ; Sugar Alcohols/*pharmacology ; Valine/*analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1983-12-23
    Description: Endotoxin-free thymosin fraction 5 elevated corticotropin, beta-endorphin, and cortisol in a dose- and time-dependent fashion when administered intravenously to prepubertal cynomolgus monkeys. Two synthetic component peptides of thymosin fraction 5 had no acute effects on pituitary function, suggesting that some other peptides in thymosin fraction 5 were responsible for its corticotropin-releasing activity. In agreement with these observations, total thymectomy of juvenile macaques was associated with decreases in plasma cortisol, corticotropin, and beta-endorphin. These findings indicate that the prepubertal primate thymus contains corticotropin-releasing activity that may contribute to a physiological immunoregulatory circuit between the developing immunological and pituitary-adrenal systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Healy, D L -- Hodgen, G D -- Schulte, H M -- Chrousos, G P -- Loriaux, D L -- Hall, N R -- Goldstein, A L -- CA 24974/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1983 Dec 23;222(4630):1353-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6318312" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenocorticotropic Hormone/*blood ; Animals ; Dose-Response Relationship, Drug ; Endorphins/blood ; Female ; Hydrocortisone/blood ; Kinetics ; Macaca fascicularis ; Thymectomy ; Thymosin/analogs & derivatives/*pharmacology ; Thymus Gland/*physiology ; beta-Endorphin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1983-11-18
    Description: Hybridoma technology has made it possible to introduce into continuous culture normal antibody-forming cells and to obtain large amounts of the immunoglobulin produced by each of these cells. Examination of the structure of a number of monoclonal antibodies that react with a single antigen has provided new information on the structural basis of the specificity and affinity of antibodies. Comparisons of families of monoclonal antibodies derived from a single germ line gene revealed the importance of somatic mutation in generating antibody diversity. Monoclonal antibodies that react with variable regions of other monoclonals allow the further dissection and modulation of the immune response. Finally, the continued somatic instability of immunoglobulin genes in cultured antibody-forming cells makes it possible to determine the rate of somatic mutation and to generate mutant monoclonal antibodies that may be more effective serological reagents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teillaud, J L -- Desaymard, C -- Giusti, A M -- Haseltine, B -- Pollock, R R -- Yelton, D E -- Zack, D J -- Scharff, M D -- 5T32GM7288/GM/NIGMS NIH HHS/ -- AI05231/AI/NIAID NIH HHS/ -- AI10702/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1983 Nov 18;222(4625):721-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6356353" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/genetics/*immunology ; *Antibody Diversity ; Antibody Specificity ; Genes ; Hybridomas/immunology ; Immunoglobulin Idiotypes/immunology ; Immunoglobulin Variable Region/genetics ; Mice ; Mutation ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1983-11-11
    Description: Nicarbazin, a drug used to control the protozoal disease coccidiosis in poultry, is a complex of the highly insoluble drug 4,4'-dinitrocarbanilide with 2-hydroxy-4,6-dimethylpyrimidine. The structures of this and other 4,4'-dinitrocarbanilide complexes have not been determined, but an analogous 2:1 complex of 4,4'-dinitrodiphenylamine with 1,4-diacetylpiperazine has been prepared in which the only possible bonds are hydrogen bonds between the amide carbonyls and amino hydrogens. Scanning electron microscopy revealed that micron-size crystals of nicarbazin disintegrate in water to form much smaller dinitrocarbanilide crystals. Similar complex dissolution in the gut of poultry may account for the greater effectiveness of dinitrocarbanilide when administered as complexed rather than uncomplexed drug. Particle size problems associated with other highly insoluble drugs and pesticides may be resolved by the use of nicarbazin-like complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rogers, E F -- Brown, R D -- Brown, J E -- Kazazis, D M -- Leanza, W J -- Nichols, J R -- Ostlind, D A -- Rodino, T M -- New York, N.Y. -- Science. 1983 Nov 11;222(4624):630-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6635662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbanilides/*administration & dosage ; Chickens ; Coccidiostats ; Crystallization ; Intestinal Absorption ; Nicarbazin/*administration & dosage ; Poultry Diseases/*prevention & control ; Solubility ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1982-02-26
    Description: The glucagon analog [l-N alpha-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, D G -- Goebel, C U -- Hruby, V J -- Bregman, M D -- Trivedi, D -- AM21085/AM/NIADDK NIH HHS/ -- AM25318/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1982 Feb 26;215(4536):1115-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6278587" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diabetes Mellitus, Experimental/*drug therapy ; Glucagon/*analogs & derivatives/*antagonists & inhibitors/therapeutic use ; Hyperglycemia/*drug therapy ; Male ; Rats ; Receptors, Cell Surface/*drug effects ; Receptors, Glucagon ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-02-01
    Description: Rhodopsin and the visual pigments are a distinct group within the family of G-protein-linked receptors in that they have a covalently bound ligand, the 11-cis-retinal chromophore, whereas all of the other receptors bind their agonists through noncovalent interactions. The retinal chromophore in rhodopsin is bound by means of a protonated Schiff base linkage to the epsilon-amino group of Lys-296. Two rhodopsin mutants have been constructed, K296G and K296A, in which the covalent linkage to the chromophore is removed. Both mutants form a pigment with an absorption spectrum close to that of the wild type when reconstituted with the Schiff base of an n-alkylamine and 11-cis-retinal. In addition, the pigment formed from K296G and the n-propylamine Schiff base of 11-cis-retinal was found to activate transducin in a light-dependent manner, with 30 to 40% of the specific activity measured for the wild-type protein. It appears that the covalent bond is not essential for binding of the chromophore or for catalytic activation of transducin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhukovsky, E A -- Robinson, P R -- Oprian, D D -- 5T32 GM07596-11/GM/NIGMS NIH HHS/ -- EY07965/EY/NEI NIH HHS/ -- R01 EY007965/EY/NEI NIH HHS/ -- S07 RR07044/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 1;251(4993):558-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1990431" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Kinetics ; Mutagenesis, Site-Directed ; Protein Binding ; Retinaldehyde/*metabolism ; Rhodopsin/genetics/*metabolism/radiation effects ; Schiff Bases ; Spectrophotometry ; Transducin/*metabolism/radiation effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-08-14
    Description: A pseudo--half-knot can be formed by binding an oligonucleotide asymmetrically to an RNA hairpin loop. This binding motif was used to target the human immunodeficiency virus TAR element, an important viral RNA structure that is the receptor for Tat, the major viral transactivator protein. Oligonucleotides complementary to different halves of the TAR structure bound with greater affinity than molecules designed to bind symmetrically around the hairpin. The pseudo--half-knot--forming oligonucleotides altered the TAR structure so that specific recognition and binding of a Tat-derived peptide was disrupted. This general binding motif may be used to disrupt the structure of regulatory RNA hairpins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ecker, D J -- Vickers, T A -- Bruice, T W -- Freier, S M -- Jenison, R D -- Manoharan, M -- Zounes, M -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ISIS Pharmaceuticals, Carlsbad, CA 92008.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1502560" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA, Viral/metabolism ; Gene Products, tat/metabolism ; HIV/*genetics ; Kinetics ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Oligoribonucleotides/*chemistry ; RNA, Viral/*chemistry/genetics/metabolism ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-07-20
    Description: Infection by human immunodeficiency virus type-1 (HIV-1) is initiated when its envelope protein, gp120, binds to its receptor, the cell surface glycoprotein CD4. Small molecules, termed N-carbomethoxycarbonyl-prolyl-phenylalanyl benzyl esters (CPFs), blocked this binding. CPFs interacted with gp120 and did not interfere with the binding of CD4 to class II major histocompatibility complex molecules. One CPF isomer, CPF(DD), preserved CD4-dependent T cell function while inhibiting HIV-1 infection of H9 tumor cells and human T cells. Although the production of viral proteins in infected T cells is unaltered by CPF(DD), this compound prevents the spread of infection in an in vitro model system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finberg, R W -- Diamond, D C -- Mitchell, D B -- Rosenstein, Y -- Soman, G -- Norman, T C -- Schreiber, S L -- Burakoff, S J -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):287-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2115689" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/*immunology ; Antiviral Agents/*pharmacology ; Benzyl Compounds/pharmacology ; Cell Line ; Genes, MHC Class II ; HIV Envelope Protein gp120/*immunology ; HIV-1/drug effects/immunology/*physiology ; Humans ; Kinetics ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...