ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (6)
  • 1985-1989  (5)
  • 1
    Publication Date: 1988-12-01
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-12-01
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 1993-01-01
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  Hydrobiologia, 170 (1). pp. 267-284.
    Publication Date: 2016-04-21
    Description: Aquatic animals directly influence the cycling of phosphorus in lakes through feeding and excretion. Traditionally, animals (zooplankton, benthic invertebrates and fish) have been assigned only minor roles in the process of freshwater phosphorus cycling. They were regarded as consumers without much regulating influence. Today there is growing evidence that animals, predators and herbivores, directly or indirectly can control biomass of primary producers and internal cycling of phosphorus. This paper summarizes different mechanisms of transformation and translocation of phosphorus via different groups of organisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 29 (1993), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list xml:id="l1" style="custom"〉1 Seeds of Scirpus lacustris and Phragmites australis were germinated in early June, and twenty-four seedlings of each species were subsequently exposed to submerged conditions (eight seedlings at each of the water depths 0.2, 0.4 and 0.8m), in outdoor 500–1 tanks in southern Sweden. Weight and shoot length of the plants were measured in September.2 The Phragmites seedlings did not show any significant growth when submerged. The Scirpus seedlings, however, developed submerged leaves and exhibited considerable submerged growth. One Scirpus plant, in shallow water (0.2m), had developed an aerial shoot by September. Shoot length of the remaining (submerged) Scirpus plants was positively related to plant weight within water depth treatments, and was higher, in relation to plant weight, in deeper water. Mean weight in September of the submerged Scirpus plants decreased with increased water depth.3 In south Swedish lakes with a lowered water table, Scirpus often occupies large areas on the lakeward side of the reed belt, which is generally dominated by Phragmites. The differences between the two species, in performance of submerged seedlings, suggest that this zonation may be created through successful submerged seedling establishment of Scirpus on the lakeward side of Phragmites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of copepods (mainly Oithona sim-ilis) and krill (Euphausia superba) grazing on the species composition of plankton communities in ship board con tainers was investigated during the spring and post spring period in the Scotia Weddell Sea in the Antarctic ocean. Numbers of grazers were experimentally manipulated in containers with natural phytoplankton assemblages. With ratural levels of copepods but no krill a high (700–950 μg C·l1, ca 30 μg chl a·.l1) phytoplankton biomass developed. In these cultures large diatoms, e.g. Corethron criophilum and chains of Thalassiosira sp., made up 80% of total phytoplankton cell carbon at the end of the experiment. In cultures with elevated numbers of copepods (5X or 10X the natural level) phytoplankton biomass was somewhat reduced (ca 23 μg chl a · l1) compared to cultures with natural copepod abundance, but still high. Phytoplankton species composition was on the other hand greatly influenced. Instead of large diatoms these cultures were dominated by Phaeocystis pouchetii (70%) together with small Nitszchia sp. and Chaetoceros neogracile (20%). In containers with krill (both juveniles and adults), but without elevated numbers of copepods, phytoplankton biomass rapidly approached zero. With 10X the in situ level of copepods, krill first preyed on these before Corethron criophilum and Thalassiosira sp. were grazed. When krill were removed a plankton community dominated by flagellates (60–90%), e.g. Pyramimonas sp. and a Cryptophycean species, grazed by an unidentified droplet-shaped heterothrophic flagellate, developed. These flagellates were the same as those which dominated the plankton community in the Weddell Sea after the ‘spring bloom’. A similar succession was observed in situ when a krill swarm grazed down a phytoplankton ‘bloom’ in a few hours. Our experiments show that copepods cannot control phytoplankton biomass in shipboard cultures even at artificially elevated numbers. Krill at concentrations similar to those in natural swarms have a great impact on both phytoplankton biomass and species composition in shipboard cultures. Both copepods and krill may have an impact on phytoplankton species composition and biomass in situ since the rates of phytoplankton cell division were probably artificially increased in shipboard cultures compared to natural conditions, where lower growth rates make phytoplankton more vulnerable to grazing. A similarity between phytoplankton successions in containers and in situ, especially with respect to krill grazing, supports the conclusion that grazing may structure phytoplankton communities in the Scotia-Weddell Sea.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 170 (1988), S. 245-266 
    ISSN: 1573-5117
    Keywords: phosphorus ; macrophyte ; aquatic plant ; sediment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Emergent macrophytes take up their phosphorus exclusively from the sediment. Submerged species obtain phosphorus both from the surrounding water and from the substrate, but under normal pore and lake water phosphorus concentrations, substrate uptake dominates. Release of phosphorus from actively growing macrophytes (both submerged and emergent) is minimal and epiphytes obtain phosphorus mainly from the water. Decaying macrophytes may act as an internal phosphorus source for the lake and add considerable quantities of phosphorus to the water. A large part of the released phosphorus is often retained by the sediments. In perennial macrophytes the amount of phosphorus released from decaying shoots is dependent on the degree of phosphorus conservation within the plant. Macrophyte stands may also be a permanent phosphorus sink due to burial of plant litter. Macrophytes affect the chemical environment (oxygen, pH), which in turn has effects on the phosphorus cycling in lakes. However, the impact of aquatic macrophytes on whole-lake phosphorus cycling is largely unknown. Controlled full-scale harvesting, herbicide or herbivory experiments are almost totally lacking. Emergent macrophytes respond positively to eutrophication, but fertilization experiments have shown that nitrogen rather than phosphorus may be the key element. Submerged macrophytes are adversely affected by a large increase in the external phosphorus input to a lake. This effect may be caused by epiphyte shading, phytoplankton shading or deposition of unfavourable sediments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 235-236 (1992), S. 303-310 
    ISSN: 1573-5117
    Keywords: Oxygen ; carbon ; respiration ; sediment ; Kattegat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sediment and seston oxygen consumption rates below the sharp halocline in the south-eastern part of the shallow Kattegat were measured and compared to calculated rates of carbon addition through the halocline. The mean rate of decrease in deep-water oxygen concentrations between March and September 1988 was 1.0 ml O2 M−3 h−1. Measurements of benthic oxygen uptake using laboratory-incubated sediment cores from depths ≥ 30 m gave a mean value of 7.8 ml O2 m−2 h−1. Below-halocline water (from 20 m, 30 m and 1 m above bottom) incubated in bottles showed oxygen consumption rates varying from ≤ 0.5 ml O2 m −3 h−1 in March to 2.8 ml O2 M−3 h-1 in late August. The sum of benthic and deep-water oxygen consumption was equivalent to a mean oxygen decrease rate of 1.7 ml O2 m−3 h−1 below the halocline. Of the total oxygen consumption below the halocline 65% was due to oxygen up-take in the water and 35% was due to benthic oxygen consumption. The sum of oxygen consumption measured in sediment cores and in bottles corresponds to a carbon utilisation of 80.1 g C m−2 (respiratory quotient (RQ), assumed 1.0 and 1.4 for water and sediment, respectively), while the decrease in deep-water oxygen concentration was equivalent to 43.0 g C m−2 (RQ assumed = 1.0). Using published values for the external N loading (including deep-water supply), 15NO3-uptake, 14CO2-uptake in combination with % 15NO3-uptake of total 15N-uptake (nitrate, ammonia and urea) and a Redfield C/N ratio of 6.6, rates of carbon addition (‘new’ or ‘export’ production) through the halocline were calculated to 31.9, 46.7 and 36.3 g C m−2, respectively, with a mean value of 38.3 g C m−2 for the 8 month period March–September. This is somewhat less than the value (50.5 g C m−2) calculated from a published empirical relationship between total and export production. The fact that the calculated carbon addition through the halocline was appreciably less than the carbon equivalent of the measured below-halocline respiration may be an effect of sediment focusing (horizontal transport of sedimenting material to deeper areas), since the bottom area below the halocline is much smaller than the total area of the Kattegat. A lower observed decrease in the oxygen concentration below the halocline compared to the sum of measured sediment and deep-water oxygen consumption on the other hand indicates oxygen supply to below-halocline waters through advection and/or vertical entrainment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 170 (1988), S. 267-284 
    ISSN: 1573-5117
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aquatic animals directly influence the cycling of phosphorus in lakes through feeding and excretion. Traditionally, animals (zooplankton, benthic invertebrates and fish) have been assigned only minor roles in the process of freshwater phosphorus cycling. They were regarded as consumers without much regulating influence. Today there is growing evidence that animals, predators and herbivores, directly or indirectly can control biomass of primary producers and internal cycling of phosphorus. This paper summarizes different mechanisms of transformation and translocation of phosphorus via different groups of organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...