ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 1990-1994  (2)
  • 1985-1989
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-06-28
    Description: Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.
    Keywords: OCEANOGRAPHY
    Type: NASA-CR-191218 , NAS 1.26:191218
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Oceans, 95 (C9). pp. 16195-16206.
    Publication Date: 2016-07-12
    Description: Generalized models of thorium and particle cycling, data from Station P, and an inversion technique are used to obtain rate estimates of important biological and chemical transformations occurring in the water column. We first verify the inversion technique using an idealized data set generated by a finite difference model, and then apply the inversion technique to data from Station P. With the Station P data, predicted rate constants for adsorption and release of thorium between the dissolved and small particle phases are consistent with the results from other workers. The predicted rate constants for the interaction between small and large particles are smaller than previous estimates. The predicted concentration of large rapidly sinking particles is greater than the concentration of suspended non-sinking particles, whereas the reverse is usually assumed to be the case. The calculated sinking rate for the large particles is 20 m d−1. This sinking rate is an order of magnitude smaller than the large particle sinking rate inferred from sediment trap mass fluxes at two levels in the water column. The reason we predict a high large particle concentration and slow settling velocity has not been uniquely determined. Possible modifications of the current model that could help to reconcile the differences between observations and model predictions include: 1) two classes of rapidly sinking particles or rate constants that change with depth, 2) direct interactions between the large particle and dissolved phases, and 3) incorporation of a continuous distribution of particle size and settling velocity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...