ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 25.80.Ls  (1)
  • Base Sequence  (1)
  • Chemistry  (1)
  • 1990-1994  (2)
  • 1985-1989  (1)
  • 1
    Publication Date: 1990-11-09
    Description: The product of the cdc2 gene, designated p34cdc2, is a serine-threonine protein kinase that controls entry of eukaryotic cells into mitosis. Freshly isolated human T lymphocytes (G0 phase) were found to have very low amounts of p34cdc2 and cdc2 messenger RNA. Expression of cdc2 increased 18 to 24 hours after exposure of T cells to phytohemagglutinin, coincident with the G1 to S transition. Antisense oligodeoxynucleotides could reduce the increase in cdc2 expression and inhibited DNA synthesis, but had no effect on several early and mid-G1 events, including blastogenesis and expression of interleukin-2 receptors, transferrin receptors, c-myb, and c-myc. Induction of cdc2 required prior induction of c-myb and c-myc. These results suggest that cdc2 induction is part of an orderly sequence of events that occurs at the G1 to S transition in T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furukawa, Y -- Piwnica-Worms, H -- Ernst, T J -- Kanakura, Y -- Griffin, J D -- CA36167/CA/NCI NIH HHS/ -- CA47843/CA/NCI NIH HHS/ -- CA50767/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):805-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237430" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Blotting, Northern ; CDC2 Protein Kinase/biosynthesis/*genetics ; Cells, Cultured ; DNA/biosynthesis/genetics ; Flow Cytometry ; *G1 Phase ; *Gene Expression Regulation ; Genes, Retinoblastoma ; Genes, myc ; Humans ; Lymphocyte Activation ; Molecular Sequence Data ; Phosphorylation ; Polymerase Chain Reaction ; Proto-Oncogene Proteins/genetics ; Proto-Oncogene Proteins c-myb ; RNA, Messenger/biosynthesis/genetics ; *S Phase ; T-Lymphocytes/*cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-601X
    Keywords: 24.60.Dr ; 24.60.Gv ; 25.80.Ls
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The previously published INDEX model is tested for nucleon spectra fromp- andα-induced reactions. The results of two alternative versions, the INCLUSIVE INDEX model and the EXCLUSIVE INDEX model, quite well agree with the data. It is found that in the INCLUSIVE INDEX model three preequilibrium stages are sufficient to describe single- and multi-nucleon emission. The model provides an useful first order estimate of the influence of the finite Fermi energy on particle spectra. This effect is very strong for nucleon induced reactions while forα-induced reactions it can be neglected. The deduced mean-free-path multiplier corroborates the long stated discrepancy between models in which excitons interact independently or not. Using preequilibrium parameters similar to those found for nucleon induced reactions the important branching ratio of contributingnp andpp pairs in stoppedπ −-absorption can be determined by INDEX model calculations. Deduced values from publishedn- andp-spectra agree reasonably well with those of other experimental analyses but deviate significantly from microscopic model predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0935-9648
    Keywords: Sensors ; ISFETs and CHEMFETs ; Polysiloxanes ; Reference FETs ; Polymer Membranes ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Synthetic receptor molecules that selectively bind charged guests can store chemical information. The transduction of this information into electronic signals connects the chemical and electronic domains. Field effect transistors (FETs) are attractive transducing elements because these microdevices are able to register and amplify chemical changes at the gate oxide surface of the semiconductor chip.Integration of molecular receptors and field effect transistors into one chemical system gives a device that can communicate-changes of substrate activities in aqueous solution. Simulations of a system in which the receptor molecules are directly attached to the FET gate oxide indicate serious limitations with respect to sensitivity, dynamic range and extreme requirements for complex stability. Therefore we have concentrated on the integration of covalently attached thin membranes.The problem of the thermodynamically ill-defined oxidemembrane ipterface has been solved by applying a covalently linked hydrophilic polyhydroxyethylmethacrylate (polyHEMA) gel between the sensing membrane and the silylated gate oxide. A buffered aqueous electrolyte solution in the hydrogel renders the surface potential at the gate oxide constant via the dissociation equilibrium of the residual silanol groups. The subsequent attachment of a polysiloxane membrane that has the required dielectric constant, glass transition temperature Tg, and receptor molecule, provides a stable chemical system that transduces the complexation of cationic species into electronic signals (CHEMFET).The response to changing K⊕ concentrations in a solution of 0.1 M NaCl is fast (〈1 sec) and linear in the concentration range of 10-5-1.0 M (55-58 mV /decade). A reference FET (REFET) based on the same technology is obtained when the intrinsic sensitivity to changes in ion concentration is eliminated by the addition of 2.10-5 mol g-1 of didodecyldimethyl ammonium bromide to the ACE membrane. Differential measurements with a REFET/CHEMFET combination showed excellent linear K⊕ response over long periods of time.All chemical reactions used are compatible with planar IC technology and allow fabrication on wafer scale.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...