ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1985-01-01
    Description: Dissimilarity coefficients measure the difference between multivariate samples and provide a quantitative aid to the identification of modern analogs for fossil pollen samples. How eight coefficients responded to differences among modern pollen samples from eastern North America was tested. These coefficients represent three different classes: (1) unweighted coefficients that are most strongly influenced by large-valued pollen types, (2) equal-weight coefficients that weight all pollen types equally but can be too sensitive to variations among rare types, and (3) signal-to-noise coefficients that are intermediate in their weighting of pollen types. The studies with modern pollen allowed definition of critical values for each coefficient, which, when not exceeded, indicate that two pollen samples originate from the same vegetation region. Dissimilarity coefficients were used to compare modern and fossil pollen samples, and modern samples so similar to fossil samples were found that most of three late Quaternary pollen diagrams could be “reconstructed” by substituting modern samples for fossil samples. When the coefficients indicated that the fossil spectra had no modern analogs, then the reconstructed diagrams did not match all aspects of the originals. No modern analogs existed for samples from before 9300 yr B.P. at Kirchner Marsh, Minnesota, and from before 11,000 yr B.P. at Wintergreen Lake, Michigan, but modern analogs existed for almost all Holocene samples from these two sites and Brandreth Bog, New York.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-09-01
    Description: Lake-level data can be used to refine palaeoclimate reconstructions based on pollen data. This approach is illustrated for the European Holocene. Estimates of P-PET (precipitation minus potential evapotranspiration) were first inferred from modern pollen analogues. The pollen-based estimates were then compared with the status of lakes within a 5° radius. Analogues with P-PET anomalies inconsistent with the lake-level changes were rejected. The "constrained" sets of analogues were used to estimate continental-scale patterns of annual mean temperature and annual precipitation at 3000-yr intervals. Estimated temperature anomalies differed only slightly from the unconstrained reconstructions. Estimated precipitation anomalies, however, showed improved spatial coherence and increased regional contrast and were occasionally reversed in sign. The effect of the constraint was to impose a rational selection among almost equally similar modern pollen analogues with similar temperatures but widely varying moisture regimes. The resulting maps showed clear, spatially coherent patterns of change in precipitation as well as temperature, suitable for comparison with climate-model results. Further improvement of these maps will become possible as a more extensive coverage of lake-level data is obtained.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1985-01-01
    Description: The concepts of pollen source area and of production and dispersal biases in pollen representation are quantified by means of a simple theoretical model. Source areas and relative pollen representation are shown to depend on basin size according to functions that describe the amount of pollen remaining airborne at increasing distances from single pollen sources. The form of these functions is determined by physical processes. Standard formulas for elevated sources do not apply, but the integrated form of Sutton's equation for particle dispersal from a ground-level source gives useful approximations applicable to pollen transport over a forest canopy. Simulations using this equation yielded source areas that increased realistically with basin size, showed substantial differences between source areas for pollen grains with different deposition velocities, and predicted that lighter pollen grains should become better represented with increasing basin size. All of these predictions are qualitatively consistent with present knowledge of the characteristics of pollen assemblages in different depositional environments. The model further allows parameters that can be estimated by statistical calibration methods to be predicted from underlying physical quantities. This extension suggests procedures for testing the theory with quantitative data on surface pollen and forest composition. Preliminary results showed reasonable agreement between estimated and predicted values of dispersal indices for the most abundant taxa in pollen spectra from the northern midwestern United States.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-01-01
    Description: A finite-element solution of the time-dependent mass-continuity equation for column-averaged ice-sheet flow and sliding is applied to the Antarctic ice sheet. First, a calibration of the model to the steady-state present ice-sheet configuration is presented. With fitted values of the parameters describing the regions of sliding, the degree of bed coupling and the ice hardness, a change in the mean annual sea-level temperature is used to simulate variation of the climatic conditions over Antarctica for both warming and cooling of the climate. Paradoxically, a climate warming of up to 9 deg leads to an increase in ice volume, while cooling leads to decreasing ice volume as long as the present margins of Antarctica are maintained. Some extreme simulations of the Antarctic ice sheet for “maximum over-riding” and “minimum warm climate” are shown for situations where the present bed conditions are altered. Finally, a time-dependent simulation shows the response of the ice-sheet system to cyclical variations in the simulated climate, demonstrating the lag of the ice-sheet response to be approximately 2700 years.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-01-01
    Description: A finite-element solution of the time-dependent mass-continuity equation for column-averaged ice-sheet flow and sliding is applied to the Antarctic ice sheet. First, a calibration of the model to the steady-state present ice-sheet configuration is presented. With fitted values of the parameters describing the regions of sliding, the degree of bed coupling and the ice hardness, a change in the mean annual sea-level temperature is used to simulate variation of the climatic conditions over Antarctica for both warming and cooling of the climate. Paradoxically, a climate warming of up to 9 deg leads to an increase in ice volume, while cooling leads to decreasing ice volume as long as the present margins of Antarctica are maintained. Some extreme simulations of the Antarctic ice sheet for “maximum over-riding” and “minimum warm climate” are shown for situations where the present bed conditions are altered. Finally, a time-dependent simulation shows the response of the ice-sheet system to cyclical variations in the simulated climate, demonstrating the lag of the ice-sheet response to be approximately 2700 years.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...