ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (4)
  • 1990-1994  (4)
  • 1985-1989
  • 1
    Publication Date: 1994-01-01
    Description: The texture and physical properties of an ice core, recovered to 215 m depth from the Ronne Ice Shelf, Antarctica, have been studied with regard to formation and transformation of the ice. At a depth of 152.8 m, a sharp discontinuity marks the transition between meteoric ice accumulated from above and marine ice accreted from below, as testified by electrolytical conductivity and stable-isotope measurements as well as geophysical field surveys. Automated image analysis of thin sections indicates that the decrease in grain-boundary density and the increase in grain cross-sectional area with depth is commensurate with though not necessarily caused by thermodynamically driven grain growth down to 120 m depth, corresponding to a vertical strain of roughly 65% as computed with a simple temperature-history, particle-path model. The observed increase of grain-boundary density (i.e. a decrease of grain-size) with age in the marine ice is in part explained by the thermal history of this layer. Sediment inclusions at the top of the marine-ice layer affect the observed grain-boundary density profile by inhibiting grain growth and dynamic recrystallization. This may allow some conclusions on the role of temperature, particulate inclusions, stress and strain rate in controlling the grain-size evolution of deforming ice, supplementing earlier laboratory experiments conducted at much shorter time-scales. Salinities (0.026%), brine volumes (0.09–0.2%) and solid-salt concentrations have been computed from electrolytical conductivity measurements (mean of 51.0 × 10−6S cm−1) for the marine ice. An assessment of salt incorporation and desalination rates shows that these low salinities can at present only be explained by a unique densification mechanism of under-water ice crystals at the base of the ice shelf.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-01-01
    Description: The texture and physical properties of an ice core, recovered to 215 m depth from the Ronne Ice Shelf, Antarctica, have been studied with regard to formation and transformation of the ice. At a depth of 152.8 m, a sharp discontinuity marks the transition between meteoric ice accumulated from above and marine ice accreted from below, as testified by electrolytical conductivity and stable-isotope measurements as well as geophysical field surveys. Automated image analysis of thin sections indicates that the decrease in grain-boundary density and the increase in grain cross-sectional area with depth is commensurate with though not necessarily caused by thermodynamically driven grain growth down to 120 m depth, corresponding to a vertical strain of roughly 65% as computed with a simple temperature-history, particle-path model. The observed increase of grain-boundary density (i.e. a decrease of grain-size) with age in the marine ice is in part explained by the thermal history of this layer. Sediment inclusions at the top of the marine-ice layer affect the observed grain-boundary density profile by inhibiting grain growth and dynamic recrystallization. This may allow some conclusions on the role of temperature, particulate inclusions, stress and strain rate in controlling the grain-size evolution of deforming ice, supplementing earlier laboratory experiments conducted at much shorter time-scales. Salinities (0.026%), brine volumes (0.09–0.2%) and solid-salt concentrations have been computed from electrolytical conductivity measurements (mean of 51.0 × 10−6 S cm−1) for the marine ice. An assessment of salt incorporation and desalination rates shows that these low salinities can at present only be explained by a unique densification mechanism of under-water ice crystals at the base of the ice shelf.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-01-01
    Description: The angular dependence and polarization behaviour of back-scattering and emission of polar firn at 5.2 GHz and 10.3 GHz were measured during an oversnow traverse in Dronning Maud Land, Antarctica. The signatures emphasize the importance of snow stratification in the interpretation of microwave remote sensing measurements. Highest backscattering coefficients and little angular variations were observed for refrozen firn near the coast. In permanently dry snow, areas with high accumulation rates and homogeneous snow morphology showed low backscattering coefficients and high emissivities. Pronounced layering and related density variations in low accumulation zones resulted in increased polarization differences of brightness temperatures and increased like-polarized backscattering coefficients. This behaviour is confirmed by the analysis of C-band scatterometer measurements of the Active Microwave Instrument aboard the European Space Agency's ERS-1.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-01-01
    Description: The angular dependence and polarization behaviour of back-scattering and emission of polar firn at 5.2 GHz and 10.3 GHz were measured during an oversnow traverse in Dronning Maud Land, Antarctica. The signatures emphasize the importance of snow stratification in the interpretation of microwave remote sensing measurements. Highest backscattering coefficients and little angular variations were observed for refrozen firn near the coast. In permanently dry snow, areas with high accumulation rates and homogeneous snow morphology showed low backscattering coefficients and high emissivities. Pronounced layering and related density variations in low accumulation zones resulted in increased polarization differences of brightness temperatures and increased like-polarized backscattering coefficients. This behaviour is confirmed by the analysis of C-band scatterometer measurements of the Active Microwave Instrument aboard the European Space Agency's ERS-1.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...