ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTROPHYSICS  (36)
  • Organic Chemistry  (24)
  • 1990-1994  (30)
  • 1985-1989  (26)
  • 1945-1949  (4)
  • 11
    Publication Date: 2019-06-28
    Description: The Antarctic meteorites LEW87057, LEW87220, LEW87223, LEW87234, LEW87237, and LEW87285 were described as paired E3 chondrites by Brian Mason (Antarctic Meteorite Newsletters, 12(1) and 15(1,2)). LEW87223 is texturally unusual, containing abundant chondrules and jagged troilite grains which are enclosed in metal. Our INAA data show that the siderophile element abundance in two splits of LEW87223 are higher than the EH range, while chalcophile elements (Cr excepted) are highly depleted. Mineral compositions are unlike those normally found in EH or EL chondrites or aubites, and in some respects resemble those of several anomalous enstatite meteorites such as Shallowater, Mt. Egerton, and Happy Canyon. The bulk and mineral compositions are consistent with the addition of EL chondrite metal to an EL3 chondrite with the removal of sulfides other than troilite which is now Cr-rich. We suggest that this meteorite is an EL3 chondrite into which metal was introduced and sulfides redistributed during an event involving impact melting and brecciation.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1571-1572
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: An analysis is presented of the equations of motion for steady MHD shock waves proopagating in interstellar clouds, for boundary conditions that preclude C shocks. In addition to J shocks, in which the neutral fluid component becomes subsonic at an adiabatic jump front, the equations admit a new class of solutions, called C-asterisk shocks, in which the transition to subsonic flow occurs continuously at a sonic point. Numerical methods are developed for computing the structure of J and C-asterisk shocks propagating in diffuse interstellar clouds. The effects of chemical, ionization, and recombination processes are included in this treatment. An alternative numerical method, which uses artificial viscosity to facilitate integration through sonic points, is analyzed and shown to be invalid. A set of exemplary solutions, computed for realistic shock parameters, shows that C-asterisk shocks occur for a broad range of conditions relevant to diffuse interstellar clouds.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 350; 700-721
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The Dust Impact Detection System (DIDSY) aboard the Giotto spacecraft provided the information on the dust flux, mass spectrum, and cumulative mass distribution flux in the coma of Comet Halley. Analysis of discrete pulse height data of cometary particles for the mass range of particles between 4.0 x 10 to the -10th g and 6.0 x 10 to the -6th g registered by the Giotto DIDSY detectors 2, 3, and 4 has been completed, and a cumulative flux has been determined for this size range of particles. Inside the cometopause, anomalous peaks have been identified as deviation from a 1/R-squared curve in both pre- and postencounter measurements.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Science Conference; Mar 14, 1988 - Mar 18, 1988; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 30 (1947), S. 1782-1783 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Spectroscopy and photometry are used to show that MR Persei, an object originally classified as a dwarf nova, is in fact a flare star. The automated CCD photometry consists of sequences of exposures within a single night as well as long-term photometry over a five-month interval. One sequence shows a 30-min flare, accompanied by post-flare 'dips'. A 0.2 mag variation with a period of about one-half day is also seen in this sequence. The long-term photometry is used to refine the period to 0.45483 d, which we attribute to the rotation of a spotted star. Evidence for membership of MR Per in the young Alpha Per cluster is considered, and found to be inconclusive.
    Keywords: ASTROPHYSICS
    Type: Astronomical Society of the Pacific, Publications (ISSN 0004-6280); 104; 681; p. 1039-1044.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-08-31
    Description: Although the classificational group 'CR' was first put forth by McSween more than 10 years ago, it included only the Al Rais and Renazzo meteorites. It has only been the relatively recent discovery of several CR-related chondrites in Antarctica and the Sahara that has provided the necessary research material for an extensive group description and classification. Some 22 separate specimens representing at least 6 falls are now purportedly members of the CR group. In light of all this new data, an old question can once again be raised as to whether or not Al Rais should be classified in the same distinct group as Renazzo. This paper explores that question.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 747-748
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-08-31
    Description: The effects of a giant impact on Uranus with respect to the axis tilt of Uranus and its satellites are discussed. The simulations of possible giant impacts were carried out using Cray supercomputers. The technique used is called smooth particle hydrodynamics (SPH). In this technique, the material in the proto-Uranus planet and in the impactor is divided into a large number of particles which can overlap one another so that local averages over these particles determine density and pressure in the problem, and the particles themselves have their own temperatures and internal energies. During the course of the simulation, these particles move around under the influence of the forces acting on them: gravity and pressure gradients. The results of model simulations are presented.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., 22nd Lunar and Planetary Science Conference; p 59-61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-01-25
    Description: Consortium studies on lunar meteorites Yamato 793169 and Asuka 881757 (formerly Asuka-31) were performed to characterize these new samples from unknown locations in the lunar mare. Both meteorites are coarse-grained mare rocks having low Mg/Fe ratios (bulk mg'=30-35) and low TiO2 (1.5-2.5 percent in homogenized bulk samples). They are intermediate between VLT and low-Ti mare basalts. Although these meteorites are not identical to each other, their mineral and bulk compositions, isotopic systematics, and crystallization ages are remarkably similar and distinct from those of all other mare basalts. They appear to represent a new type of low-Ti mare basalt that crystallized at about 3.9Ga. These meteorites are inconsistent with the canonical correlation between the TiO2 contents and ages of mare basalts and suggest that our knowledge of lunar volcanism is far from complete.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1555-1556
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: The author's current simulations of Giant Impacts on the protoearth show the development of large hot rock vapor atmospheres. The Balbus-Hawley mechanism will pump mass and angular momentum outwards in the equatorial plane; upon cooling and expansion the rock vapor will condense refractory material beyond the Roche distance, where it is available for lunar formation. During the last seven years, the author together with several colleagues has carried out a series of numerical investigations of the Giant Impact theory for the origin of the Moon. These involved three-dimensional simulations of the impact and its aftermath using Smooth Particle Hydrodynamics (SPH), in which the matter in the system is divided into discrete particles whose motions and internal energies are determined as a result of the imposed initial conditions. Densities and pressures are determined from the combined overlaps of the particles, which have a bell-shaped density distribution characterized by a smoothing length. In the original series of runs all particle masses and smoothing lengths had the same values; the matter in the colliding bodies consisted of initial iron cores and rock (dunite) mantles. Each of 41 runs used 3,008 particles, took several weeks of continuous computation, and gave fairly good representations of the ultimate state of the post-collision body or bodies but at best crude and qualitative information about individual particles in orbit. During the last two years an improved SPH program was used in which the masses and smoothing lengths of the particles are variable, and the intent of the current series of computations is to investigate the behavior of the matter exterior to the main parts of the body or bodies subsequent to the collisions. These runs are taking times comparable to a year of continuous computation in each case; they use 10,000 particles with 5,000 particles in the target and 5,000 in the impactor, and the particles thus have variable masses and smoothing lengths (the latter are dynamically adjusted so that a particle typically overlaps a few tens of its neighbors). Since the matter in the impactor provides the majority of the mass left in orbit after the collision, and since the masses of the particles that originated in the impactor are smaller than those in the target, the mass resolution in the exterior parts of the problem is greatly improved and the exterior particles properly simulate atmospheres in hydrostatic equilibrium.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 245-246
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: We have recently presented evidence for the existence of live Fe-60 in the early solar system. This evidence comes from observations of 2.4 to 50 epsilon unit (1 part in 10(exp 4)) relative excesses of Ni-60 measured in samples from the eucrite Chervony Kut (CK). These isotopic excesses have been produced by the decay of the short-lived radionuclide Fe-60 (T(sub 1/2) = 1.5 Ma). Because CK originates from a planetesimal which was totally molten and its high Fe/Ni ratio is due to a planet-wide Fe-Ni fractionation during metal-silicate segregation, the presence of the Fe-60 decay product indicates the large scale abundance of Fe-60 in the early solar system and its presence during differentiation of this planetesimal. The observed variable Ni-60 excesses in different bulk samples and mineral separates from CK can only be understood if some Fe-60 was still alive at the time when basaltic magma had solidified on the eucrite parent body. The lack of a correlation between Ni-60 and the respective Fe/Ni ratios in different mineral fractions from CK indicates a metamorphic remobilization of Ni after essentially all Fe-60 has decayed. However, Ni-60 from three bulk samples from different locations within the meteorite appears to correlate reasonably well with the respective Fe/Ni ratios. If we regard this correlation as an isochron then its slope yields a Fe-60/Fe-56 ratio f (3.9 +/- 0.6) x 10(exp -9) and an initial Ni-60 of 3.2 plus or minus 0.9 epsilon units at the time of crystallization of CK. Estimates based on these values and a approximately 10 Ma time interval between CK solidification and formation of the earliest condensates in the solar system followed by rapid accretion of planetary bodies indicate that the decay of Fe-60 could produce sufficient heat to melt these planetesimals. If Al-26 was present on a planetary scale as Fe-60 and at abundances close to values observed in Allende inclusions then melting of small early formed planets is inevitable. As an attempt to further explore the Fe-60/Ni-60 isotope system as an early solar system chronometer we studied another noncumulate eucrite, Juvinas (JUV) (sample USNM 1051), which belongs to the same subgroup as CK.
    Keywords: ASTROPHYSICS
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1305-1306
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...