ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: psbA ; Cyanelle ; Cyanophora paradoxa ; Evolution ; Sequence analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The psbA gene is part of the reaction center of photosystem II in cyanobacteria and the plastids of higher plants. Its primary sequence is highly conserved among all species investigated so far and its sequence shows homologies with the L and M subunits of the reaction center of photosynthetic bacteria. We have analyzed the psbA homolog from a eukaryotic alga, Cyanophora paradoxa, where the gene is encoded on cyanelle DNA. These cyanelles are surrounded by a murein sacculus and resemble cyanobacteria in many other characteristics, although they are genuine organelles that functionally replace plastids. Analysis of the gene revealed a psbA protein identical in length (360 codons) with the cyanobacterial counterpart. The overall sequence identity is, however, more pronounced between cyanelle psbA and the shorter (353 amino acids) psbA product found in higher plants. These data strongly support the postulated bridge position of cyanelles between chloroplasts and free-living cyanobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 224 (1990), S. 222-231 
    ISSN: 1617-4623
    Keywords: Cyanophora paradoxa ; Cyanelle ; Ribosomal protein gene ; S10-spc operon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Cyanophora paradoxa photosynthetic organelles termed cyanelles perform the functions of chloroplasts in higher plants, while the structural and biochemical characteristics of the cyanelle are essentially cyanobacterial. Our interest in studying the evolutionary relationship between cyanelles and chloroplasts led us to focus on cyanelle-encoded genes of the translational apparatus, specifically genes equivalent to those of the bacterial S10 and spc operons. The structure of a large ribosomal protein gene cluster from cyanelle DNA was characterized and compared with that from plastids and bacteria. Sequences of the following cyanelle genes encompassing 4.8 kb are reported here: 5′-rpl22-rps3-rpl16-rps17-rpl14-rpl5-rps8-rpl6-rpl18-rps5-3′. Cyanelles contain five more ribosomal protein genes than do higher plant chloroplasts and four more genes than Euglena gracilis plastids in the S10/spc region of this gene cluster. The gene encoding rpl36 is absent, in contrast to the case in other plastid DNAs. These genes, including the previously characterized genes rpl3, rpl2 and rps19, are transcribed as a primary transcript of ∼7500 nucleotides. The occurrence of transcripts smaller than this presumptive primary transcript suggests that it is processed into defined segments. Transcription terminates 3′ of rps5 where a 40 by hairpin with one mismatch (−42.2 kcal) may be folded. Immediately downstream of rps5 an open reading frame, ORF492, is contained on a separate transcript. A comparison of gene content, operon structure and deduced amino acid sequence of the genes in the S10 and spc operons from different organisms supports the notion that cyanelles are intermediary between known plastids and cyanobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...