ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Collection
Years
Year
  • 1
    Publication Date: 1999-05-10
    Description: It is demonstrated, by using a simple model, that bedforms in a short tidal embayment can develop due to a positive feedback between tidal currents, sediment transport and bedforms. The water motion is modelled by the depth integrated shallow water equations. The system is forced by a prescribed free-surface elevation at the entrance of the embayment. For the sediment dynamics a diffusively dominated suspended load transport model is considered. Tidal averaging is used to obtain the bottom profiles at the long morphological time scale. The stability of a constantly sloping equilibrium bottom profile is studied for various combinations of the model parameters. It turns out that without a mechanism that generates vorticity this equilibrium profile is stable. In that case small-scale perturbations can at most become marginally stable if no bedload term in the bottom evolution equation is incorporated. If vorticity is generated, in our model by bottom friction torques, the basic state is unstable. The spatial patterns of the unstable modes and their growth rates depend, among other things, on the strength of the bottom friction, the width of the embayment and the grain size: if the sediment under consideration consists of large particles, the equilibrium will be more stable than when smaller particles are considered. Without a diffusive term in the bed evolution equation, small-scale perturbations become unstable. To avoid this physically unrealistic behaviour bedload terms are included in the sediment transport. Furthermore, it is shown that using an asymptotic expansion for the concentration as given in earlier literature is only valid for small or moderate mode numbers and the technique is extended to large mode numbers. A physical interpretation of the results is also given.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-02-25
    Description: A wave of small amplitude is considered which approaches a straight beach normally and which is partially reflected at the coastline. By assuming that the local depth is much smaller than the length of the incoming wave, the shallow water equations are used to determine the water motion. The surf zone width is assumed to be small compared to the length of the incoming wave and hence the effect of wave breaking is included only parametrically. The time development of the cohesionless bottom is described by the Exner continuity equation and by an empirical sediment transport rate formula which relates the sediment flux to the steady currents and wave stirring. It is shown that the basic-state solution, which does not depend on the longshore coordinate, may be unstable with respect to longshore bedform perturbations, so that rhythmic topographies form. The instability process is due to a positive feedback mechanism involving the incoming wave, synchronous edge waves and the bedforms. The growth of the bottom perturbations is related to the presence of steady currents caused by the interaction of the incoming wave with synchronous edge waves which in turn are excited by the incoming wave moving over the wavy bed. For natural beaches the model predicts two maxima in the amplification rate: one is related to incoming waves of low frequency, the other to wind waves. Thus two bedforms of different wavelengths can coexist in the nearshore region with longshore spacings of a few hundred and a few tens of metres, respectively. To illustrate the potential validity of the model, its results are compared with field data. The overall agreement is fairly satisfactory.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...