ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 168 (1998), S. 105-111 
    ISSN: 1432-136X
    Keywords: Key words Flight power ; Daily energy budget ; Energy metabolism ; Allometry ; Glossophaginae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Flapping flight is one of the most expensive activities in terms of metabolic cost and this cost has previously been considered equal for the two extant vertebrate groups which evolved flapping flight. Owing to the difficulty of obtaining accurate measurements without disturbing flight performance, current estimates of flight cost within the group of small birds and bats differ by more than a factor of five for given body masses. To minimize the potential problem that flight behaviour may be affected by the measurements, we developed an indirect method of measuring flight energy expenditure based on time budget analysis in which small nectar-feeding bats (Glossophaginae) could continue their natural rhythm of flying and resting entirely undisturbed. Estimates of metabolic flight power based on 172 24-h time and energy budget measurements were obtained for nine individual bats from six species (mass 7–28 g). Metabolic flight power (PF) of small bats was found to increase with body mass following the relation PF = 50.2 M0.771 (r2 = 0.96, n = 13, PF in W, M in kg). This is about 20–25% below the majority of current predictions of metabolic flight cost for small birds. Thus, either the flight cost of small birds is significantly lower than has previously been thought or, contrary to current opinion, small bats require less energy to fly than birds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 168 (1998), S. 434-444 
    ISSN: 1432-136X
    Keywords: Key words Hovering flight power ; Aerodynamics ; Fast-response respirometry ; Bat ; Hummingbird
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Hover-feeding glossophagine bats provide, in addition to the hummingbirds, a second vertebrate model for the analysis of hovering flight based on metabolic measurement and aerodynamic theory. In this study, the power input of hovering Glossophaga soricina bats (11.9 g) was measured by standard respirometry and fast-response (〈0.2 s) oxygen analysis. Bats needed 5–7 s after a rest-to-flight transition to return to a respiratory steady state. Therefore, only hovering events preceeded by a 7-s flight interval were evaluated. V˙O2 during hovering fluctuated with a frequency of 3–5 Hz, which corresponded in frequency to the licking movement of the tongue. During hovering, bats often may have hypoventilated as indicated by reduced V˙O2 and a respiratory exchange ratio (RER) well below the steady-state value of 1. Steady-state oxygen consumption (and derived power input) during hovering was estimated to be 27 (25–29) ml O2 g−1 h−1 (158 W kg−1 or 1.88 W) in the 11.9-g bats as indicated by three independent findings: (1) V˙O2 was 26 ml O2 g−1 h−1 after 6.5 s of hovering, (2) the mean RER during single hovering events was at its steady-state level of 1 only at oxygen uptake rates of 25–29 ml g−1 h−1, and (3) when the oxygen potentially released from estimated oxygen stores was added to the measured oxygen uptake, the upper limit for oxygen consumption during hovering was found to be 29 ml O2 g−1 h−1. Hovering power input was about 1.2 times the value of minimum flight power input (Winter and von Helversen 1998) and thus well below the 1.7–2.6 difference in power output postulated by aerodynamic theory (Norberg et al. 1993). Mass specific power input was 40% less than in hummingbirds. Thus, within the possible modes of hovering flight, Glossophaga bats seem to operate at the high-efficiency end of the spectrum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 169 (1999), S. 38-48 
    ISSN: 1432-136X
    Keywords: Key words Hovering flight ; Glossophagine bats ; Hummingbirds ; Sphingid moths ; Allometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Three groups of specialist nectar-feeders covering a continuous size range from insects, birds and bats have evolved the ability for hovering flight. Among birds and bats these groups generally comprise small species, suggesting a relationship between hovering ability and size. In this study we established the scaling relationship of hovering power with body mass for nectar-feeding glossophagine bats (Phyllostomidae). Employing both standard and fast-response respirometry, we determined rates of gas exchange in Hylonycteris underwoodi (7 g) and Choeronycteris mexicana (13–18 g) during hover-feeding flights at an artificial flower that served as a respirometric mask to estimate metabolic power input. The O2 uptake rate (V˙ o2) in ml g−1 h−1 (and derived power input) was 27.3 (1.12 W or 160 W kg−1) in 7-g Hylonycteris and 27.3 (2.63 W or 160 W kg−1) in 16.5-g Choeronycteris and thus consistent with measurements in 11.9-g Glossophagasoricina (158 W kg−1, Winter 1998). V˙ o2 at the onset of hovering was also used to estimate power during forward flight, because after a transition from level forward to hovering flight gas exchange rates initially still reflect forward flight rates. V˙ o2 during short hovering events (〈1.5 s) was 19.0 ml g−1 h−1 (1.8 W) in 16-g Choeronycteris, which was not significantly different from a previous, indirect estimate of the cost of level forward flight (2.1 W, Winter and von Helversen 1998). Our estimates suggest that power input during hovering flight P h (W) increased with body mass M (kg) within 13–18-g Choeronycteris (n = 4) as P h  = 3544 (±2057 SE) M 1.76 (±0.21 SE) and between different glossophagine bat species (n = 3) as P h  = 128 (±2.4 SE) M 0.95 (±0.034 SE). The slopes of three scaling functions for flight power (hovering, level forward flight at intermediate speed and submaximal flight power) indicate that: 1. The relationship between flight power to flight speed may change with body mass in the 6–30-g bats from a J- towards a U-shaped curve. 2. A metabolic constraint (hovering flight power equal maximal flight power) may influence the upper size limit of 30–35 g for this group of flower specialists. Mass-specific power input (W kg−1) during hovering flight appeared constant with regard to body size (for the mass ranges considered), but differed significantly (P 〈 0.001) between groups. Group means were 393 W kg−1 (sphingid moths), 261 W kg−1 (hummingbirds) and 159 W kg−1 (glossophagine bats). Thus, glossophagine bats expend the least metabolic power per unit of body mass supported during hovering flight. At a metabolic power input of 1.1 W a glossophagine bat can generate the lift forces necessary for balancing 7 g against gravitation, whereas a hummingbird can support 4 g and a sphingid moth only 3 g of body mass with the same amount of metabolic energy. These differences in power input were not fully explained by differences in induced power output estimated from Rankine-Froude momentum-jet theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...