ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 197 (1995), S. 306-312 
    ISSN: 1432-2048
    Keywords: Arabidopsis ; Photosynthesis ; Chlorophyll fluorescence ; Oxygen evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was grown under light regimes of differing spectral qualities, which results in differences in the stoichiometries of the two photosynthetic reaction centres. The acclimative value of these changes was investigated by assessing photosynthetic function in these plants when exposed to two spectrally distinct actinic lights. Plants grown in an environment enriched in far-red light were better able to make efficient use of non-saturating levels of actinic light enriched in long-wavelength red light. Simultaneous measurements of chlorophyll fluorescence and absorption changes at 820 nm indicated that differences between plants grown under alternative light regimes can be ascribed to imbalances in excitation of photosystems I and II (PSI, PSII). Measurements of chlorophyll fluorescence emission and excitation spectra at 77 K provided strong evidence that there was little or no difference in the composition or function of PSI or PSII between the two sets of plants, implying that changes in photosynthetic stoichiometry are primarily responsible for the observed differences in photosynthetic function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Arabidopsis ; Blue light ; Photoreceptor ; Photosynthesis ; Photosystem stoichiometry ; Phytochrome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The regulation by light of the composition of the photosynthetic apparatus was investigated in Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta. When grown in high- and low-irradiance white light, wild-type plants and photomorphogenic mutants showed large differences in their maximum photosynthetic rate and chlorophyll a/b ratios; such changes were abolished by growth in red light. Photosystem I (PSI) and PSII levels were measured in wild-type plants grown under a range of light environments; the results indicate that regulation of photosystem stoichiometry involves the specific detection of blue light. Supplementing red growth lights with low levels of blue light led to large increases in PSII content, while further increases in blue irradiance had the opposite effect; this latter response was abolished by the hy4 mutation, which affects certain events controlled by a blue-light receptor. Mutants defective in the phytochrome photoreceptors retained regulation of photosystem stoichiometry. We discuss the results in terms of two separate responses controlled by blue-light receptors: a blue-high-fluence response which controls photosystem stoichiometry; and a blue-low-fluence response necessary for activation of such control. Variation in the irradiance of the red growth light revealed that the blue-high-fluence response is attenuated by red light; this may be evidence that photosystem stoichiometry is controlled not only by photoreceptors, but also by photosynthetic metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Key words: Acclimation ; Arabidopsis (acclimation) ; Chloroplast ; Photomorphogenesis ; Photoreceptor ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The regulation by light of the composition of the photosynthetic apparatus was investigated in photomorphogenic mutants of Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta. Leaf chlorophyll, photosynthesis, photosystem II function, and ribulose-1,5-bisphosphate carboxylase-oxygenase and photosystem II contents were determined for plants grown under high- or low-irradiance growth regimes. Although certain mutant lines had altered chloroplast composition compared to the wild type, all photoreceptor mutants tested were capable of light-dependent changes in chloroplast composition and photosynthetic function, indicating that photoreceptors do not play a central role in the regulation of acclimation at the level of the chloroplast. However, the clear acclimation defect in a det1 signal transduction mutant indicates that photoreceptor-controlled responses either share regulatory components with acclimation, or are important in the expression of components which in turn regulate acclimation. We suggest that the COP/DET/FUS regulatory cluster is a focus for multiple signal transduction pathways, including some of the metabolic signals which form the basis for the acclimatory response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 54 (1997), S. 169-183 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence quenching ; photoinhibition ; photoprotection ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have used the technique of thermoluminescence (TL) to investigate high-light-induced chlorophyll fluorescence quenching phenomena in barley leaves, and have shown it to be a powerful tool in such investigations. TL measurements were taken from wild-type and chlorina f2 barley leaves which had been dark-adapted or exposed to 20 min illumination of varying irradiance or given varying periods of recovery following strong irradiance. We have found strong evidence that there is a sustained trans-thylakoid ΔpH in leaves following illumination, and that this ΔpH gives rise to quenching of chlorophyll fluorescence which has previously been identified as a slowly-relaxing component of antenna-related protective energy dissipation; we have identified a state of the PS II reaction centre resulting from high light treatments which is apparently able to perform normal charge separation and electron transport but which is ‘non-photochemically’ quenched, in that the application of a light pulse of high irradiance cannot cause the formation of a high fluorescent state; and we have provided evidence that a transient state of the PS II reaction centre is formed during recovery from such high light treatments, in which electron transport from QAto QBis apparently impaired.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 61 (1999), S. 77-90 
    ISSN: 1573-5079
    Keywords: acclimation ; chlorophyll fluorescence ; LHC II ; energy dissipation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The major light-harvesting complex (LHC IIb) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Multiple isoforms of the protein bind chlorophyll and xanthophyll chromophores, but it is commonly believed that the pigment-binding properties of different LHC IIb complexes are conserved within and between species. We have investigated the structure and function of different LHC IIb complexes isolated from Arabidopsis thaliana grown under different light conditions. LHC IIb isolated from low light-grown plants shows increased amounts of the Lhcb2 gene product, increased binding of chlorophyll a, and altered energy transfer characteristics. We suggest that Lhcb2 specifically binds at least one additional chlorophyll a compared to the Lhcb1 gene product, and that differences in the functioning of LHC IIb from high and low light-grown plants are a direct consequence of the change in polypeptide composition. We show that changes in LHC IIb composition are accompanied by changes in photosynthetic function in vivo and discuss the possible functional significance of LHC IIb heterogeneity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-10-21
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...