ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • 1
    Publication Date: 1997-06-01
    Print ISSN: 0167-577X
    Electronic ISSN: 1873-4979
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 48 (1997), S. 1229-1248 
    ISSN: 1572-8943
    Keywords: α-Cu-Al alloys ; dislocations ; DSC ; energetics ; recrystallization ; rolled ; segregation ; short-range-order
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A general model is discussed for assessing the energy release due to the pinning of solute atoms to partial dislocations. The present approach discloses the influence of dislocation character distributions on the magnitude of this energy. In order to test its validity in αCu-Al alloys, differential scanning calorimetry (DSC) evaluations associated with the different peaks involved during linear heating were performed employing both cold worked and quenched materials. Dislocation densities were calculated from recrystallization traces. On the basis of this model it was concluded that the observed energy difference between the deformed and the quenched materials during the exothermic peak designated as Stage 2 corresponds to the pinning process. It was also concluded that nearly equal number of edge and screw dislocations are present in the dislocation configuration of deformed alloys. Nevertheless, it is proposed that dislocation-induced order might also occur as a consequence of enhanced solute concentration around the partials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 50 (1997), S. 533-545 
    ISSN: 1572-8943
    Keywords: Cu-19 at% Al ; dislocations ; kinetics ; segregation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A model is proposed to describe the kinetics of solute segregation to partial dislocations in solid solutions of cold-rolled alloys. The case when half edge and half screw dislocations are present is considered. The model gives account of the kinetic behaviour observed in a deformed Cu-19 at% Al alloy where two unknown processes could be assessed during calorimetric isothermal experiments. The faster process corresponds to segregation to screw dissociated dislocations while the slower one corresponds to segregation to edge dissociated dislocations. Experimental activation energies, larger for edge dislocations, are close to that for pipe diffusion along the partials corrected by pinner binding energy terms. It is also predicted that segregation occurs faster as the dislocation density is increased. A quantitative comparison of experimental results with model predictions is given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 57 (1999), S. 607-622 
    ISSN: 1572-8943
    Keywords: Cu–3.4 At.% Sb alloy ; kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The kinetics of solute segregation to partial dislocations in a Cu–3.4 At.% Sb alloy was studied by using a phenomenological approach with differential scanning calorimetry and isothermal calorimetry. The material, severely deformed by repeated bending, presented an excess of dissociated edge dislocations with a dislocation density amounting to about 8.5·1014 m−2, calculated using a prior model of the authors, together with calorimetric recrystallization trace analysis. The kinetics was found to be ruled by two overlapping mechanisms: diffusion of solute atoms mostly through dislocation pipes in the initial and middle stages of the reaction process, acting together with bulk solute diffusion in these stages and later. Bulk solute diffusion increases as the reaction proceeds, as shown by the increasing values of apparent activation energy in the reaction. The exponent of the Mehl-Johnson-Avrami equation used in the phenomenological description was successfully fitted to a time—temperature-dependent function, increasing in agreement with the apparent activation energy behaviour, as may be expected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...