ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 2516-2518 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A three-dimensional direct numerical simulation of the wake of a flat plate held normal to a free stream has been conducted for a Reynolds number of 1000, using a high-order finite-difference scheme. The calculated flow structures and the coefficient of drag are shown to be markedly different from those obtained from an equally resolved two-dimensional simulation. The three-dimensional simulation is able to account for the intrinsic three-dimensionality that develops beyond a certain critical Reynolds number (∼200). The time-averaged drag predicted by the three-dimensional simulation is in good agreement with the experimental data, and also captures a low-frequency time variation that is seen in the experiments. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 525-547 
    ISSN: 0271-2091
    Keywords: time-splitting method ; high-order finite difference scheme ; wake instability ; flat plate ; vortex interactions ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Well-resolved two-dimensional numerical simulations of the unsteady separated flow past a normal flat plate at low Reynolds numbers have been performed using a fractional step procedure with high-order spatial discretization. A fifth-order upwind-biased scheme is used for the convective terms and the diffusive terms are represented by a fourth-order central difference scheme. The pressure Poisson equation is solved using a direct method based on eigenvalue decomposition of the coefficient matrix. A systematic study of the flow has been conducted with high temporal and spatial resolutions for a series of Reynolds numbers. The interactions of the vortices shed form the shear layers in the near-and far-wake regions are studied. For Reynolds numbers less than 250 the vortices are observed to convect parallel to the freestream. However, at higher Reynolds numbers (500 and 1000), complex interactions including vortex pairing, tearing and deformations are seen to occur in the far-wake region. Values of the drag coefficient and the wake closure length are presented and compared with previous experimental and numerical studies.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-10-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-03-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: We present details and performance of a pressure based multigrid solution procedure for the Navier-Stokes equations discretized on triangular grids. The discretization uses a control volume methodology, with linear inter-nodal variation of the flow variables. The use of the multigrid technique provides rapid and grid-independent rates of convergence. Three model driven cavity flows are computed, and the performance of the method at several grid densities and Reynolds numbers is reported. Representative flow fields characterizing the viscous eddies are also presented.
    Keywords: Numerical Analysis
    Type: Seventh Copper Mountain Conference on Multigrid Methods; 409-424; NASA-CP-3339
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: This report compiles the various research activities conducted under the auspices of the NASA Grant NAG3-1026, "Numerical Investigation of Hot Gas Ingestion by STOVL Aircraft" during the period of April 1989 to April 1994. The effort involved the development of multigrid based algorithms and computer programs for the calculation of the flow and temperature fields generated by Short Take-off and Vertical Landing (STOVL) aircraft, while hovering in ground proximity. Of particular importance has been the interaction of the exhaust jets with the head wind which gives rise to the hot gas ingestion process. The objective of new STOVL designs to reduce the temperature of the gases ingested into the engine. The present work describes a solution algorithm for the multi-dimensional elliptic partial-differential equations governing fluid flow and heat transfer in general curvilinear coordinates. The solution algorithm is based on the multigrid technique which obtains rapid convergence of the iterative numerical procedure for the discrete equations. Initial efforts were concerned with the solution of the Cartesian form of the equations. This algorithm was applied to a simulated STOVL configuration in rectangular coordinates. In the next phase of the work, a computer code for general curvilinear coordinates was constructed. This was applied to model STOVL geometries on curvilinear grids. The code was also validated in model problems. In all these efforts, the standard k-Epsilon model was used.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-CR-4769 , NAS 1.26:4769 , E-10676
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...