ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • 1
    Publication Date: 1999-11-01
    Print ISSN: 1086-9379
    Electronic ISSN: 1945-5100
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-17
    Description: Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.
    Keywords: Lunar and Planetary Exploration
    Type: NASA-CR-204190 , NAS 1.26:204190 , LPI-Contrib-916 , Apr 24, 1997 - Apr 27, 1997; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-16
    Description: The unusual composition of the nakhlites, a group of pyroxenitic martian meteorites with young ages, presents an opportunity to learn about nonbasaltic magmatic activity on another planet. However, the limited number of these meteorites makes unraveling their history difficult. A promising terrestrial analog for the formation of the nakhlites is Theo's Flow in Ontario, Canada. This atypical, 120 m-thick flow differentiated in place, forming distinct layered lithologies of peridotite, pyroxenite, and gabbro. Theo's pyroxenite and the nakhlites share strikingly similar petrographies, with concentrated euhedral to subhedral augite grains set in a plagioclase-rich matrix. These two suites of rocks also share specific petrologic features, mineral and whole-rock compositional features, and size and spatial distributions of cumulus grains. The numerous similarities suggest that the nakhlites formed by a similar mechanism in a surface lava flow or shallow intrusion. Their formation could have involved settling of crystals in a phenocryst-laden flow or in situ nucleation and growth of pyroxenes in an ultramafic lava flow. The latter case is more likely and requires steady-state nucleation and growth of clusters of pyroxene grains (and olivine in the nakhlites), circulating in a strongly convecting melt pool, followed by settling and continued growth in a thickening cumulate pile. Trapped pockets of intercumulus liquid in the pile gradually evolved, finally growing Fe-enriched rims on cumulus grains. With sufficient evolution, the melt reached plagioclase supersaturation, causing rapid growth of plagioclase sprays and late-stage mesostasis growth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: SOEST-Publ-4886 , HIGP-Publ-1077 , Meteorites and Planetary Science; 34; 919-932
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: We report the results of a detailed experiment study of the kinetics and mechanism of pyrite (FeS2) chemical weathering under Venus surface conditions. Pyrite is thermodynamically unstable on the surface of Venus and will spontaneously decompose to pyrrhotite (Fe7S8) because the observed S2 partial pressure in the lower atmosphere of Venus is lower than the S2 vapor pressure over coexisting pyrite and pyrrhotite. Pyrite decomposition kinetics were studied in pure CO2 and CO2 gas mixtures along five isotherms in the temperature range 390-531 C. In all gas mixtures studied, pyrite thermally decomposes to pyrrhotite (Fe7S8), which on continued heating loses sulfur to form more Fe-rich pyrrhotites. During this process the pyrrhotites are also being oxidized to form magnetite (Fe3O4), which converts to maghemite (gamma-Fe2O3), and then to hematite (alpha-Fe2O3). The reaction rates for pyrite thermal decomposition to pyrrhotite were determined by measuring the weight loss. The thickness of the unreacted pyrite in the samples provided a second independent reaction rate measurement. Finally, Mossbauer spectra done on 42 of the 115 experimental samples provided a third set of independent reaction rate data. Pyrite decomposition follows zero-order kinetics and is independent of the amount of pyrite present. The rate of pyrite decomposition is apparently independent of the gas compositions used and of the CO2 number density over a range of a factor of 40. The derived activation energy of approximately 150 kJ/mole is the same in pure CO2, two different CO-CO2 mixtures, and a ternary CO-SO2-CO2 mixture. Based on data for a CO-CO2-SO2 gas mixture with a CO number density approximately 10 times higher than at the surface of Venus and a SO2 number density approximately equal to that at the surface of Venus, the rate of pyrite destruction on the surface of Venus varies from about 1225 +/- 238 days/cm at the top of Maxwell Montes (approximately 660 K) to about 233 +/- 133 days/cm in the plains of Venus (approximately 740 K). These lifetimes are very short on a geological time scale and show that pyrite cannot exist on the surface of Venus for any appreciable length of time.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 115; 1; p. 159-180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...