ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 323-328 
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; Denitrification potential ; Irrigated field ; Mineralizable carbon ; Effect of maize plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The study was conducted under irrigated field conditions to examine the effect of maize plants on denitrification. Both planted and unplanted field plots received 150kgNha–1 as urea. In a third treatment, which was also planted and received urea at 150kgNha–1, the soil nitrate N content was brought up to equal to that in the unplanted plots by applying additional doses of N as calcium nitrate. Soil cores were collected 24 and 72h after irrigation and the denitrification rate was measured by the acetylene inhibition method. Nitrate-N content, aerobically mineralizable C, microbial biomass carrying capacity and denitrification potential were also studied on field-moist soil. Maize plants grown under field conditions always had the potential to increase denitrification in conditions of both high and low water-filled porosity. When nitrate-N content of the planted soil decreased due to plant uptake, denitrification was reduced in the planted soils. However, when nitrate-N uptake by plants was compensated through additional doses of nitrate fertilizer, denitrification was always higher in planted than unplanted soil. The stimulatory effect of plants on denitrification was observed at both high and low soil nitrate-N concentrations, though it was more pronounced at high nitrate-N levels. The effect of plants on denitrification and related parameters was confined to the root zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Key words Microbial biomass ; Carbon availability ; Microbial biomass turnover ; Wheat-maize rotation ; Urea ; Farmyard manure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Seasonal changes in carbon availability and microbial biomass were studied in soil under an irrigated wheat-maize cropping system receiving different fertilizter treatments over the past 10 years. Treatments included N-100 and N-200 (urea at 100 and 200kgNha–1 year–1, respectively), FYM-16 and FYM-32 (farmyard manure at 16 and 32tha–1 year–1, respectively) and a control (unfertilized). Aerobically mineralizable carbon (AMC; C mineralized after 10 days aerobic incubation at 30°C) increased (13–16%) under wheat at both rates of urea whereas under maize it increased (22%) only with the lower rate of urea. Farmyard manure also increased the content of soil AMC under both crops, the effect being two- to threefold higher under wheat than under maize. Urea application caused an 32–78% increase in the specific respiratory activity (SRA) under wheat but caused an 11–50% decrease during the maize season. Farmyard manure also resulted in a higher SRA under both crops but only at the higher application rate. Under wheat, microbial biomass C (MBC) decreased in urea-treated plots but showed a slight increase at the higher rate of FYM. During the maize season, MBC was higher under both urea (42–46%) and FYM (36–47%) treatments as compared to the control. Microbial biomass turnover rate was highest for FYM-32 (2.08), followed by FYM-16 and urea treatments (1.35–1.49); control plots showed a turnover rate of 0.82. The higher AMC and SRA during the active growth period of wheat than that of maize indicated that root-derived C from wheat was higher in amount and more easily degradable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 27 (1998), S. 189-196 
    ISSN: 1432-0789
    Keywords: Key words Irrigation ; Maize ; Nitrous oxide ; Urea ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Nitrous oxide (N2O) emissions were measured from an irrigated sandy-clay loam cropped to maize and wheat, each receiving urea at 100 kg N ha–1. During the maize season (24 August–26 October), N2O emissions ranged between –0.94 and 1.53 g N ha–1 h–1 with peaks during different irrigation cycles (four) ranging between 0.08 and 1.53 g N ha–1 h–1. N2O sink activity during the maize season was recorded on 10 of the 29 sampling occasions and ranged between 0.18 and 0.94 g N ha–1 h–1. N2O emissions during the wheat season (22 November–20 April) varied between –0.85 and 3.27 g N ha–1 h–1, whereas peaks during different irrigation cycles (six) were in the range of 0.05–3.27 g N ha–1 h–1. N2O sink activity was recorded on 14 of the 41 samplings during the wheat season and ranged between 0.01 and 0.87 g N ha–1 h–1. Total N2O emissions were 0.16 and 0.49 kg N ha–1, whereas the total N2O sink activity was 0.04 and 0.06 kg N ha–1 during the maize and wheat seasons, respectively. N2O emissions under maize were significantly correlated with denitrification rate and soil NO3 –-N but not with soil NH4 +-N or soil temperature. Under wheat, however, N2O emissions showed a strong correlation with soil NH4 +-N, soil NO3 –-N and soil temperature but not with the denitrification rate. Under either crop, N2O emissions did not show a significant relationship with water-filled pore space or soil respiration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Key words Acetylene inhibition ; Denitrification ; Farmyard manure ; Irrigated wheat-maize ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Studies were conducted on denitrification in the plough layer of an irrigated sandy-clay loam under a wheat-maize cropping system receiving different fertilizer treatments. The treatments were: N-100 (urea-N at 100kgha–1year–1), N-200 (urea-N at 200kgha–1year–1), FYM-16 (farmyard manure at 16 tonnes ha–1year–1), FYM-32 (farmyard manure at 32 tonnesha–1year–1) and the control (unfertilized). Averaged across sampling dates during the wheat season, the denitrification rate as measured by the C2H2-inhibition/soil-core incubation method was highest in N-200 (83gNha–1day–1), followed by FYM-32 (60gNha–1day–1, N-100 (51gNha–1day–1), FYM-16 (47gNha–1day–1) and the control (33gNha–1 day–1). During the maize growing season, average denitrification rate was highest in FYM-32 (525gNha–1day–1), followed by FYM-16 (408gNha–1day–1), N-200 (372gNha–1day–1, N-100 (262gNha–1day–1) and the control (203gNha–1day–1). Denitrification loss integrated over the whole vegetation period was at a maximum under FYM-32 (13.9kgNha–1), followed by N-200 (11.8kgNha–1), FYM-16 (10.6kgNha–1) and N-100 (8.0kgNha–1), whereas the minimum was observed for the control (5.8kgNha–1). Under both crops, denitrification was significantly correlated with water-filled pore space and soil NO3 –-N. The best multiple regression models accounted for 52% and 70% of the variability in denitrification under wheat and maize, respectively. Results indicated that denitrification is not an important N loss mechanism in this well-drained, irrigated sandy-clay loam under a wheat-maize cropping system receiving fertilizer inputs in the range of 100–200kgNha–1year–1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0789
    Keywords: Key words Acetylene inhibition ; Soil core technique ; Denitrification ; Irrigation ; Nitrous oxide entrapment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Two versions of the acetylene inhibition (AI)/soil core method were compared for the measurement of denitrification loss from an irrigated wheat field receiving urea-N at a rate of 100 kg ha–1. With AI/soil core method A, the denitrification rate was measured by analysing the headspace N2O, followed by estimation of N2O dissolved in the solution phase using Bunsen absorption coefficients. With AI/soil core method B, N2O entrapped in the soil was measured in addition to that released from soil cores into the headspace of incubation vessels. In addition, the two methods were also compared for measurement of the soil respiration rate. Of the total N2O produced, 6–77% (average 40%) remained entrapped in the soil, whereas for CO2, the corresponding figures ranged from 12–65% (average 44%). The amount of the entrapped N2O was significantly correlated with the water-filled pore space (WFPS) and with the N2O concentration in the headspace, whereas CO2 entrapment was dependent on the headspace CO2 concentration but not on the WFPS. Due to the entrapment of N2O and CO2 in soil, the denitrification rate on several (18 of the 41) sampling dates, and soil respiration rate on almost all (27 of the 30) sampling dates were significantly higher with method B compared to method A. Averaged across sampling dates, the denitrification rate measured with method B (0.30 kg N ha–1 day–1) was twice the rate measured with method A, whereas the soil respiration rate measured with method B (34.9 kg C ha–1 day–1) was 1.6 times the rate measured with method A. Results of this study suggest that the N2O and CO2 entrapped in soil should also be measured to ensure the recovery of the gaseous products of denitrification by the soil core method.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 32 (1998), S. 285-298 
    ISSN: 1573-1634
    Keywords: surface reactions ; convective flow ; Darcy flow ; boundary-layer flow ; heat and mass transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract The convective boundary-layer flow on an impermeable vertical surface in a fluid-saturated porous medium is considered where the flow results from the heat released by an exothermic catalytic reaction on the surface converting a reactive component within the convective fluid to an inert product. The reaction is modelled by first-order kinetics with an Arrhenius temperature dependence. Numerical solutions of the governing equations are obtained for a range of parameter values. These show, for large activation energies, that localized rapid changes in wall temperature and localized high reaction rates occur a little way from the leading edge. Asymptotic expansions, valid at large distances from the leading edge, are derived, the form that these expansions take is qualitatively different depending on whether or not reactant consumption is included in the model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 33 (1998), S. 279-293 
    ISSN: 1573-1634
    Keywords: surface reactions ; critical points ; convective flow ; porous media ; Darcy flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract A model for the convective flow in a fluid‐saturated porous medium containing a reactive component is considered. This component undergoes an exothermic reaction (modelled by a first order mechanism) on an impermeable bounding surface, the resulting heat released driving the convective flow. Large Rayleigh number flow near a stagnation point is treated in detail by first considering the steady states. Multiple solution branches and critical points arising from a hysteresis bifurcation are identified. The form that these solution branches take depends on whether or not the effects of reactant consumption are included. An initial‐value problem is then discussed. This shows that both the lower (slow reaction) and upper (fast reaction) solution branches are stable (and the ultimate state of the system). When the parameter values are such that there is no steady state, the solution develops a finite‐time singularity, the nature of which is analysed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: acetylene inhibition ; denitrification ; irrigated field ; maize ; 15N balance ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Denitrification and total N losses were quantified from an irrigated field cropped to maize and wheat, each receiving urea at 100 kg N ha-1. During the maize growing season (60 days), the denitrification loss measured directly by acetylene inhibition-soil cover method amounted 2.72 kg N ha-1 whereas total N loss measured by 15N balance was 39 kg ha-1. Most (87%) of the denitrification loss under maize occurred during the first two irrigation cycles. During the wheat growing season (150 days), the denitrification loss directly measured by acetylene inhibition-soil cover and acetylene inhibition-soil core methods was 1.14 and 3.39 kg N ha-1, respectively in contrast to 33 kg N ha-1 loss measured by 15N balance. Most (70-88%) of the denitrification loss under wheat occurred during the first three irrigation cycles. Soil moisture and NO 3 - -N were the major factors limiting denitrification under both crops. Higher N losses measured by 15N balance than C2H2 inhibition method were perhaps due to underestimation of denitrification by C2H2 inhibition method and losses other than denitrification, most probably NH3 volatilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-11-28
    Print ISSN: 0178-2762
    Electronic ISSN: 1432-0789
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-03-27
    Print ISSN: 0178-2762
    Electronic ISSN: 1432-0789
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...