ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Collection
Years
Year
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Pseudomonas aeruginosa, the production of many virulence factors and secondary metabolites is regulated in concert with cell density through quorum sensing. Two quorum-sensing regulons have been identified in which the LuxR homologues LasR and RhIR are activated by N-(3-oxododecanoyl)-l-homo-serine lactone (OdDHL) and N-butanoyl-l-homoserine lactone (BHL) respectively. The lasR and rhIR genes are linked to the luxl homologues last and rhll, which are responsible for synthesis of OdDHL and BHL, respectively. As lasRI and rhlRI are both involved in regulating synthesis of exoenzymes such as elastase, we sought to determine the nature of their interrelationship. By using lacZ transcriptional fusions in both homologous (P. aeruginosa) and heterologous (Escherichia coli) genetic backgrounds we provide evidence that (i) lasR is expressed constitutively throughout the growth cycle, (ii) rhIR expression is regulated by LasR/OdDHL, and (iii) that RhIR/BHL regulates rhll. We also show that expression of the stationary-phase sigma factor gene rpoS is abolished in a P. aeruginosa lasR mutant and in the pleiotropic BHL-negative mutant PAN067. Furthermore, our data reveal that in E. coli, an rpoS-lacZ fusion is regulated directly by RhIR/BHL. Taken together, these results indicate that P. aeruginosa employs a multilayered hierarchical quorum-sensing cascade involving RhIR/BHL and LasR/OdDHL, interlinked via RpoS, to integrate the regulation of virulence determinants and secondary metabolites with adaptation and survival in the stationary phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pseudomonas aeruginosa releases several extracellular proteins which are secreted via two independent secretion pathways. Alkaline protease (AprA) is released by its own specific secretion machinery which is an ABC-transporter. Despite sequence similarities between components of ABC-transporters in different bacteria, each transporter is dedicated to the secretion of a particular protein or a family of closely related proteins. Heterologous complementation between ABC-transporters for unrelated polypeptides can occur, but only at a very low level. We show that the 50 C-terminal amino acids of AprA constitute an autonomous secretion signal. By heterologous complementation experiments between the unrelated a-haemolysin (HlyA) and Apr secretion systems we demonstrated that it is only the recognition of the secretion signal by the trans-locator which confers specificity to the secretion process. Secretion was size-dependent. However inclusion of glycine-rich repeats from HlyA in AprA seems to overcome the size limitation exerted by the Apr secretion apparatus such that the machinery secreted a hybrid protein 20kDa larger than the normal maximal size.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...