ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 57 (1995), S. 883-898 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract Radiation target theory has been extended to complex biochemical systems. Mathematical analyses are presented for multiple forms of biological active proteins, for the presence of large inhibitors or activators, for compounds which regulate rate or affinity and for multipe-step reactions. Several predictions of these models have been verified experimentally.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Radiation and environmental biophysics 35 (1996), S. 159-162 
    ISSN: 1432-2099
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Inactivation of proteins due to the direct action of ionizing radiation and the electron energy loss spectra of organic materials indicate that an average of 60–66 eV of energy is lost from high energy electrons in each inelastic collision with target molecules. The average energy loss per inelastic collision with high energy electrons in solid, carbon-based materials, proteins and nucleic acids is calculated from mass collisional stopping powers and empirical total inelastic cross-sections. Bragg's Additivity Law is used for the calculation of the mean excitation energy of molecules. For simple organic compounds, the calculated average energy loss is close to that obtained by direct observation of the energy loss suffered by electrons as they pass through thin films of organic material. The density effect correction for the rate of energy loss, important in the more complex case of proteins irradiated with 10 MeV electrons, is determined using the comparable mass collisional stopping power of water and proteins. In this manner, a value is obtained for the average energy per inelastic collision of high energy electrons with proteins, which is similar to the average energy per inactivating event of proteins. Analogous calculations for nucleic acids are also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...