ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (7)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2013-08-29
    Description: We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.
    Keywords: Oceanography
    Type: Applied Optics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: For Earth-observing satellite instruments, it was standard to consider each instrument band to have a spectral response that is infinitely narrow, i.e., to have a response from a single wavelength. The SeaWiFS bands, however, have nominal spectral bandwidths of 20 and 40 nm. These bandwidths effect the SeaWiFS measurements on orbit. The effects are also linked to the manner in which the instrument was calibrated and to the spectral shape of the radiance that SeaWiFS views. The spectral shape of that radiance will not be well known on orbit. In this technical memorandum, two source spectra are examined. The first is a 12,000 K Planck function, and the second is based on the modeling results of H. Gordon at the University of Miami. By comparing these spectra, the best available corrections to the SeaWiFS measurements for source spectral shape, plus estimates of the uncertainties in these corrections, can be tabulated.
    Keywords: Oceanography
    Type: NASA-TM-104566 , NAS 1.15:104566 , Rept-97B00059
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: For Earth-observing satellite instruments, it was standard to consider each instrument band to have a spectral response that is infinitely narrow, i.e., to have a response from a single wavelength. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) bands, however, have nominal spectral bandwidths of 20 and 40nm. These bandwidths affect the SeaWiFS measurements on orbit. The effects are also linked to the manner in which the instrument was calibrated and to the spectral shape of the radiance that SeaWiFS views. Currently, SeaWiFS is calibrated such that the digital counts from each instrument band are linked to the Earth-exiting radiance at an individual center wavelength. Before launch, SeaWiFS will be recalibrated so that the digital counts from each band will be linked to the Earth-exiting radiance integrated over the spectral response of that band. In this technical memorandum, the effects of the instrument calibration and the source spectral shape on SeaWiFS measurements, including the in-band and out-of-band responses, and the center wavelengths are discussed.
    Keywords: Oceanography
    Type: Rept-97B00004-Vol-39-Pt1 , NASA-TM-104566-Vol-39-Pt1 , NAS 1.15:104566-Vol-39-Pt1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.
    Keywords: Oceanography
    Type: NASA-TM-104566-Vol-38 , NAS 1.15:104566-Vol-38 , Rept-96B00114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The solar radiation-based calibration (SRBC) of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was performed on 1 November 1993. Measurements were made outdoors in the courtyard of the instrument manufacturer. SeaWiFS viewed the solar irradiance reflected from the sensor's diffuser in the same manner as viewed on orbit. The calibration included measurements using a solar radiometer designed to determine the transmittances of principal atmospheric constituents. The primary uncertainties in the outdoor measurements are the transmission of the atmosphere and the reflectance of the diffuser. Their combined uncertainty is about 5 or 6%. The SRBC also requires knowledge of the extraterrestrial solar spectrum. Four solar models are used. When averaged over the responses of the SeaWiFS bands, the irradiance models agree at the 3.6% level, with the greatest difference for SeaWiFS band 8. The calibration coefficients from the SRBC are lower than those from the laboratory calibration of the instrument in 1997. For a representative solar model, the ratios of the SRBC coefficients to laboratory values average 0.962 with a standard deviation of 0.012. The greatest relative difference is 0.946 for band 8. These values are within the estimated uncertainties of the calibration measurements. For the transfer-to-orbit experiment, the measurements in the manufacturer's courtyard are used to predict the digital counts from the instrument on its first day on orbit (August 1, 1997). This experiment requires an estimate of the relative change in the diffuser response for the period between the launch of the instrument and its first solar measurements on orbit (September 9, 1997). In relative terms, the counts from the instrument on its first day on orbit averaged 1.3% higher than predicted, with a standard deviation of 1.2% and a greatest difference of 2.4% or band 7. The estimated uncertainty for the transfer-to-orbit experiment is about 3 or 4%.
    Keywords: Oceanography
    Type: NASA/TM-1999-206892/VOL5 , NAS 1.15:206892/VOL5 , Rept-99B00063 , (ISSN 1522-8789)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: This report documents the fifth Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-5), which was held at the National Institute of Standards and Technology (NIST) on 23-30 July 1996. The agenda for SIRREX-5 was established based on recommendations made during SIRREX-4. For the first time in a SIRREX activity, instrument intercomparisons were performed at field sites, which were near NIST. The goals of SIRREX-5 were to continue the emphasis on training and the implementation of standard measurement practices, investigate the calibration methods and measurement chains in use by the oceanographic community, provide opportunities for discussion, and intercompare selected instruments. As at SIRREX-4, the day was divided between morning lectures and afternoon laboratory exercises. A set of core laboratory sessions were performed: 1) in-water radiant flux measurements; 2) in-air radiant flux measurements; 3) spectral radiance responsivity measurements using the plaque method; 4) device calibration or stability monitoring with portable field sources; and 5) various ancillary exercises designed to illustrate radiometric concepts. Before, during, and after SIRREX-5, NIST calibrated the SIRREX-5 participating radiometers for radiance and irradiance responsivity. The Facility for Automated Spectroradiometric Calibrations (FASCAL) was scheduled for spectral irradiance calibrations for standard lamps during SIRREX-5. Three lamps from the SeaWiFS community were submitted and two were calibrated.
    Keywords: Oceanography
    Type: NASA/TM-1999-206892/VOL7 , NAS 1.15:206892/VOL7 , Rept-99E01696
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was originally calibrated by the instrument's manufacturer, Santa Barbara Research Center (SBRC), in November 1993. In preparation for an August 1997 launch, the SeaWiFS Project and the National Institute of Standards and Technology (NIST) undertook a second calibration of SeaWiFS in January and April 1997 at the facility of the spacecraft integrator, Orbital Sciences Corporation (OSC). This calibration occurred in two phases, the first after the final thermal vacuum test, and the second after the final vibration test of the spacecraft. For the calibration, SeaWiFS observed an integrating sphere from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at four radiance levels. The spectral radiance of the sphere at these radiance levels was also measured by the SeaWiFS Transfer Radiometer (SXR). In addition, during the calibration, SeaWiFS and the SXR observed the sphere at 16 radiance levels to determine the linearity of the SeaWiFS response. As part of the calibration analysis, the GSFC sphere was also characterized using a GSFC spectroradiometer. The 1997 calibration agrees with the initial 1993 calibration to within +/- 4%. The new calibration coefficients, computed before and after the vibration test, agree to within 0.5%. The response of the SeaWiFS channels in each band is linear to better than 1%. In order to compare to previous and current methods, the SeaWiFS radiometric responses are presented in two ways: using the nominal center wave-lengths for the eight bands; and using band-averaged spectral radiances. The band-averaged values are used in the flight calibration table. An uncertainty analysis for the calibration coefficients is also presented.
    Keywords: Oceanography
    Type: NASA/TM-1999-206892/VOL4 , NAS 1.15:206892/VOL4 , Rept-99B00036
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...