ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Collection
Years
Year
  • 1
    Publication Date: 1998-01-01
    Print ISSN: 0165-2125
    Electronic ISSN: 1878-433X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-12-25
    Description: Breaking waves generated by a two-dimensional hydrofoil moving near a free surface at constant speed (U∞), angle of attack and depth of submergence were studied experimentally. The measurements included the mean and fluctuating shape of the breaking wave, the surface ripples downstream of the breaker and the vertical distribution of vertical and horizontal velocity fluctuations at a single station behind the breaking waves. The spectrum of the ripples is highly peaked and shows little variation in both its peak frequency and its shape over the first three wavelengths of the wavetrain following the breaker. For a given speed, as the breaker strength is increased, the high-frequency ends of the spectra are nearly identical but the spectral peaks move to lower frequencies. A numerical instability model, in conjunction with the experimental data, shows that the ripples are generated by the shear flow developed at the breaking region. The spectrum of the vertical velocity fluctuations was also found to be highly peaked with the same peak frequency as the ripples, while the corresponding spectrum of the horizontal velocity fluctuations was found not to be highly peaked. The root-mean-square (r.m.s.) amplitude of the ripples (ηrms) increases with increasing speed and with decreasing depth of submergence of the hydrofoil, and decreases as X-1/2 with increasing distance X behind the breaker. The quantity (gηrms)/(U∞Vrms) (where Vrms is the maximum r.m.s. vertical velocity fluctuation and g is the gravitational acceleration) was found to be nearly constant for all of the measurements.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-03-25
    Description: The effect of free-surface drift layers on the maximum height that a steady wave can attain without breaking is explored through experiments and numerical simulations. In the experiments, the waves are generated by lowing a two-dimensional fully submerged hydrofoil at constant depth, speed and angle of attack. The drift layer is generated by towing a plastic sheet on the water surface ahead of the hydrofoil It is found that the presence of this drift layer (free-surface wake) dramatically reduces the maximum non-breaking wave height and that this wave height correlates well with the surface drift velocity. In the simulations, the inviscid two-dimensional fully nonlinear Euler equations arc solved numerically. Initially symmetric wave profiles are superimposed on a parallel drift layer whose mean flow characteristics match those in the experiments. It is found that for large enough initial wave amplitudes a bulge forms at the crest on the forward face of the wave and the vorticity fluctuations just under the surface in this region grow dramatically in time. This behaviour is taken as a criterion to indicate impending wave breaking. The maximum non-breaking wave elevations obtained in this way are in good agreement with the experimental findings.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...