ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Collection
Years
Year
  • 1
    Publication Date: 2018-06-05
    Description: Successful return of interstellar dust and cometary material by the Stardust Sample Return Capsule requires an accurate description of the Earth entry vehicle's aerodynamics. This description must span the hypersonic-rarefied, hypersonic-continuum, supersonic, transonic, and subsonic flow regimes. Data from numerous sources are compiled to accomplish this objective. These include Direct Simulation Monte Carlo analyses, thermochemical nonequilibrium computational fluid dynamics, transonic computational fluid dynamics, existing wind tunnel data, and new wind tunnel data. Four observations are highlighted: 1) a static instability is revealed in the free-molecular and early transitional-flow regime due to aft location of the vehicle s center-of-gravity, 2) the aerodynamics across the hypersonic regime are compared with the Newtonian flow approximation and a correlation between the accuracy of the Newtonian flow assumption and the sonic line position is noted, 3) the primary effect of shape change due to ablation is shown to be a reduction in drag, and 4) a subsonic dynamic instability is revealed which will necessitate either a change in the vehicle s center-of-gravity location or the use of a stabilizing drogue parachute.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The scientific objective of the Mars Surveyor Program 2005 mission is to return Mars rock, soil, and atmospheric samples to Earth for detailed analysis. The present investigation focuses on design of Mars Ascent Vehicle for this mission. Aerodynamic, aerothermodynamic, and trajectory design considerations are addressed to assess the ascent configuration, determine aerodynamic stability, characterize thermal protection system requirements, and ascertain the required system mass. Aerodynamic analysis reveals a subsonic static instability with the baseline configuration; however, stability augmentation options are proposed to mitigate this problem. The ascent aerothermodynamic environment is shown to be benign (on the order of the sea-level boiling point of water on Earth). As a result of these low thermal and pressure loads, a lightweight, low rigidity material can be employed as the aftbody aerodynamic shroud. The required nominal MAV lift-off mass is 426 kg for a December 2006 equatorial launch into a 300-km circular orbit with 30-degree inclination. Off-nominal aerodynamic and atmospheric conditions are shown to increase this liftoff mass by approximately 10%. Through performance of these analyses, the Mars Ascent Vehicle is deemed feasible with respect to the current mission mass and size constraints.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 98-2850 , 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; Jun 15, 1998 - Jun 18, 1998; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic and transonic flow regimes is then presented. This description is based on Direct Simulation Monte Carlo analyses in the rarefied-flow regime, thermochemical nonequilibrium Computational Fluid Dynamics in the hypersonic regime, existing wind tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and finally, ballistic range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric-interface into the desired surface-impact orientation and velocity.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 97-3658
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...