ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (9)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 1191-1205 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The similarity form of the scalar-variance spectrum at high Schmidt numbers is investigated for nonstationary turbulence. Theoretical arguments show that Batchelor scaling may apply only at high Reynolds numbers. At low Reynolds numbers, Batchlor scaling is not possible unless the turbulence is stationary or the enstrophy decays asymptotically as t−2. When this latter condition is satisfied, it is shown from an analysis using both the Batchelor and Kraichnan models for the scalar-variance transfer spectrum that the k−1 power law in the viscous-convective subrange is modified. Results of direct numerical simulations of high Schmidt number passive scalar transport in stationary and decaying two-dimensional turbulence are compared to the theoretical analysis. For stationary turbulence, Batchelor scaling is shown to collapse the spectra at different Schmidt numbers and a k−1 viscous-convective subrange is observed. The Kraichnan model is shown to accurately predict the simulation spectrum. For nonstationary turbulence decaying at constant Reynolds number for which the enstrophy decays as t−2, scalar fields for different Schmidt numbers are simulated in situations with and without a uniform mean scalar gradient. The Kraichnan model is again shown to predict the spectra in these cases with different anomalous exponents in the viscous-convective subrange. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 600-605 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The decay of a homogeneous turbulence generated by an axisymmetric distribution of random impulsive forces acting at the initial instant is studied by means of large-eddy simulations. The impulsive forces may be either parallel or perpendicular to the symmetry axis. For impulsive forces, which result in a k4 low wave number energy spectrum of the turbulence, it is determined that the flow approaches isotropy on all scales of motion at long times, provided the Reynolds number is large. However, for the type of impulsive forces originally proposed by Saffman [J. Fluid Mech. 27, 581 (1967)], in which a k2 low wave number energy spectrum is produced, the turbulence approaches isotropy only at the smallest scales, and remains significantly anisotropic at the largest and energy-containing scales. Nevertheless, a similarity state of the flow field establishes itself asymptotically, in which the kinetic energy per unit mass of the turbulence decays as t−6/5. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 1498-1506 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The mixing of a passive scalar field by turbulence that is generated by buoyancy forces acting on an initial random density field is considered. Various asymptotic similarity states of the passive scalar field with and without a uniform mean passive scalar gradient are determined by dimensional arguments based on exact or near invariants of the density and passive scalar fields. The results of large-eddy numerical simulations are shown to support the derived scaling laws. The large-eddy simulations also demonstrate the different mixing properties of an active and passive scalar field. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 171-180 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Direct numerical simulations of decaying two-dimensional turbulence in a fluid of large extent are performed primarily to ascertain the asymptotic decay laws of the energy and enstrophy. It is determined that a critical Reynolds number Rc exists such that for initial Reynolds numbers with R(0)〈Rc final period of decay solutions result, whereas for R(0)〉Rc the flow field evolves with increasing Reynolds number. Exactly at R(0)=Rc, the turbulence evolves with constant Reynolds number and the energy decays as t−1 and the enstrophy as t−2. A t−2 decay law for the enstrophy was originally predicted by Batchelor for large Reynolds numbers [Phys. Fluids Suppl. II, 12, 233 (1969)]. Numerical simulations are then performed for a wide range of initial Reynolds numbers with R(0)〉Rc to study whether a universal power-law decay for the energy and enstrophy exist as t→∞. Different scaling laws are observed for R(0) moderately larger than Rc. When R(0) becomes sufficiently large so that the energy remains essentially constant, the enstrophy decays at large times as approximately t−0.8. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-03-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-01-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-05-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-06-01
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-07-10
    Description: The decay of high-Reynolds-number inhomogeneous turbulence in an unbounded domain is considered. The turbulence may be initially localized in one to three spatial directions and the fluid is assumed to be at rest at infinity in those directions. Previous arguments used to determine the decay laws of homogeneous turbulence are extended to the decay of inhomogeneous turbulence by integrating the turbulence statistics over the inhomogeneous directions. Dimensional arguments based on the invariance or near-invariance of low-wavenumber spectral coefficients associated with the integrated mean-square velocity are used to determine asymptotic decay laws for inhomogeneous turbulence. These decay laws depend on the number of inhomogeneous directions of the flow field and reduce to the well-known decay laws of homogeneous turbulence when this number is zero. Different decay laws are determined depending on the spectral behaviour at low wavenumbers. Asymptotic similarity states of the spectrum during the decay and of the distribution of the mean-square velocity along the inhomogeneous directions are also determined. An analytical result for the decay of the mean-square velocity at the centre of the initial disturbance is found, and the decay proceeds more rapidly with increasing number of inhomogeneous directions due to the transport of energy along those directions. Large-eddy simulations of decaying turbulence homogeneous in a plane and localized in a single direction are performed to test the theoretical scaling laws. The numerically determined asymptotic decay laws of the integrated mean-square velocity agree well with the theoretical predictions. A self-similar decay of the spectra and mean-square velocity distributions is also observed. The simulation results suggest that when the low-wavenumber spectral coefficient is an exact invariant, a unique similarity state depending only on the initial value of this invariant and independent of all other aspects of the initial conditions is attained asymptotically.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...