ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 28 (1995), S. 604-609 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 9 (1998), S. 529-533 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Six commercial glass–ionomer cements commonly used for various dental applications have been investigated using differential scanning calorimetry (DSC). The heat-flow behaviour and heat capacity of the cements were measured during isothermal (at 37°C) setting reactions. The DSC results show that all materials undergo an exothermic setting process, but with different enthalpies of reactions and different heat capacities; there are no remaining endo- or exothermic reactions after the setting of the cement. All materials examined were found to be effective thermal insulators.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2811-2819 
    ISSN: 0887-6266
    Keywords: PTFE/hexafluoropropylene copolymers ; crystal ; disorder ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A series of new copolymers of tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) containing up to 50 mol % of the hexafluoropropylene comonomer have been investigated with respect to chain conformation and crystal structure using wide-angle X-ray diffraction (WAXD). Increasing HFP content leads to significant departures from the highly ordered crystalline structure of the homopolymer PTFE; the helical conformation of the chain relaxes and untwists to accommodate the larger —CF3 pendant group in the HFP unit. Simultaneously the lateral hexagonal packing of the helices becomes less ordered and the a-dimension of the hexagonal cell increases. The above effects are progressive with increasing HFP content. At 50 mol % HFP incorporation the structure is a disordered crystalline phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2811-2819, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1153-1165 
    ISSN: 0887-6266
    Keywords: even-odd nylons ; lamellar crystals ; structure ; hydrogen-bonding schemes ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Nylon 6 9 has been shown to have structures with interchain hydrogen bonds in both two and in three directions. Chain-folded lamellar crystals were studied using transmission electron microscopy and sedimented crystal mats and uniaxially oriented fibers studied by X-ray diffraction. The principal room-temperature structure shows the two characteristic (interchain) diffraction signals at spacings of 0.43 and 0.38 nm, typical of α-phase nylons; however, nylon 6 9 is unable to form the α-phase hydrogen-bonded sheets without serious distortion of the all-trans polymeric backbone. Our structure has c and c* noncoincident and two directions of hydrogen bonding. Optimum hydrogen bonding can only occur if consecutive pairs of amide units alternate between two crystallographic planes. The salient features of our model offer a possible universal solution for the crystalline state of all odd-even nylons. The nylon 6 9 room-temperature structure has a C-centered monoclinic unit cell (β = 108°) with the hydrogen bonds along the C-face diagonals; this structure bears a similarity to that recently proposed for nylons 6 5 and X3. On heating nylon 6 9 lamellar crystals and fibers, the two characteristic diffraction signals converge and meet at 0.42 nm at the Brill temperature, TB · TB for nylon 6 9 lamellar crystals is slightly below the melting point (Tm), whereas TB for nylon 6 9 fibers is ≅ 100°C below Tm. Above TB, nylon 6 9 has a hexagonal unit cell; the alkane segments exist in a mobile phase and equivalent hydrogen bonds populate the three principal (hexagonal) directions. A structure with perturbed hexagonal symmetry, which bears a resemblance to the reported γ-phase for nylons, can be obtained by quenching from the crystalline growth phase (above TB) to room temperature. We propose that this structure is a “quenched-in” perturbed form of the nylon 6 9 high-temperature hexagonal phase and has interchain hydrogen bonds in all three principal crystallographic directions. In this respect it differs importantly from the γ-phase models. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1153-1165, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 675-688 
    ISSN: 0887-6266
    Keywords: nylons ; lamellar crystals ; diffraction ; Brill transition temperatures ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Four members of the even-even nylon 2 Y series, for Y = 6, 8, 10, and 12, have been crystallized in the form of chain-folded lamellar single crystals from 1,4-butanediol and studied by transmission electron microscopy (imaging and diffraction), x-ray diffraction, and thermal analysis. The structures of these 2 Y nylons are different from those of nylon 6 6 and many other even-even nylons. At room temperature, two strong diffraction signals are observed at spacings 0.42 and 0.39 nm, respectively; these values differ from the 0.44 and 0.37 nm diffraction signals observed for nylon 6 6 and most even-even nylons at ambient temperature. Detailed analyses of the diffraction patterns show that all these 2 Y nylons have triclinic unit cells. The diamine alkane segments of 2 Y nylons are too short to sustain chain folds; thus, the chain folds must be in the diacid alkane segments in all cases. On heating the crystals from room temperature to the melt, the triclinic structures transform into pseudohexagonal structures and the two diffraction signals meet at the Brill transition temperature which occurs significantly below the melting point. The room temperature structures of these 2 Y nylons are similar to the unit cell of nylon 6 6 at elevated temperature, but below its Brill temperature. The room temperature structures and behavior on heating of the nylon 2 Y family is noticeably different from that of the even-even nylon X 4 family, although the only difference between these families of polyamides is the relative disposition of the amide groups within the chains. The results show that in order to understand the structure, behavior and properties of crystalline nylons, especially as a function of temperature, the detailed stereochemistry needs to be taken into account. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 675-688, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2401-2412 
    ISSN: 0887-6266
    Keywords: nylon 2 4 ; chain folding ; lamellar crystals ; structure and morphology ; crystallization ; electron microscopy ; Brill transformation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Chain-folded lamellar crystals of nylon 2 4 have been prepared from dilute solution by addition of poor solvent. Two crystal structures are observed at room temperature: a monoclinic form I, precipitated at elevated temperature, and a less-defined, orthorhombic form II, precipitated at room temperature. The unit cell parameters for both forms are similar to those reported for its isomer, nylon 3. Nylon 2 4 form II is a liquid-crystal-like or disordered phase, consisting of hydrogen-bonded sheets in poor register in the hydrogen bond direction. Form I crystals have two characteristic interchain spacings of 0.41 nm and 0.39 nm at room temperature and on heating, exhibit a structural transformation and a Brill temperature (250°C) characteristic of many other even-even nylons. Nylon 2 4 is a member of the nylon 2 Y and nylon 2N 2(N+1) families, and the form I crystals show behavior commensurate with both. We propose they contain a proportion of intersheet hydrogen bonds at room temperature, similar to that for the nylon 2 Y family, and the short dimethylene alkane segments mean that the structure consists of hydrogen-bonded a-sheets, with an amide unit in each fold, similar to that of nylon 4 6. The fold geometry and sheet structure is compared with chain-folded apβ-sheet polypeptides and nylon 3. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2401-2412, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-03-01
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-01-01
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-01-01
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-06-01
    Print ISSN: 0024-9297
    Electronic ISSN: 1520-5835
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...