ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 1996-05-01
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 70 (1996), S. 470-479 
    ISSN: 1432-1394
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. Spectral methods have been a standard tool in physical geodesy applications over the past decade. Typically, they have been used for the efficient evaluation of convolution integrals, utilizing homogeneous, noise-free gridded data. This paper answers the following three questions: (a) Can data errors be propagated into the results? (b) Can heterogeneous data be used? (c) Is error propagation possible with heterogeneous data? The answer to the above questions is yes and is illustrated for the case of two input data sets and one output. Firstly, a solution is obtained in the frequency domain using the theory of a two-input, single-output system. The assumption here is that both the input signals and their errors are stochastic variables with known PSDs. The solution depends on the ratios of the error PSD and the signal PSD, i.e., the noise-to-signal ratios of the two inputs. It is shown that, when the two inputs are partially correlated, this solution is equivalent to stepwise collocation. Secondly, a solution is derived in the frequency domain by a least-squares adjustment of the spectra of the input data. The assumption is that only the input errors are stochastic variables with known power spectral density functions (PSDs). It is shown that the solution depends on the ratio of the noise PSDs. In both cases, there exists the non-trivial problem of estimating the input noise PSDs, given that we only have available the error variances of the data. An effective but non-rigorous way of overcoming this problem in practice is to approximate the noise PSDs by simple stationary models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...