ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 1995-1999  (3)
Collection
Years
Year
  • 1
    Publication Date: 2019-06-28
    Description: Given the mathematical framework and specific viscoelastic model in Part 1 our primary goal in this second part is focused on model characterization and assessment for the specific titanium alloy, TIMETAL 21S. The model is motivated by experimental evidence suggesting the presence of significant rate/time effects in the so-called quasilinear, reversible, material response range. An explanation of the various experiments performed and their corresponding results are also included. Finally, model correlations and predictions are presented for a wide temperature range.
    Keywords: Structural Mechanics
    Type: NASA-TM-107494 , NAS 1.15:107494 , E-10792
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Using an internal-variable formalism as a starting point, we describe the viscoelastic extension of a previously-developed viscoplasticity formulation of the complete potential structure type. It is mainly motivated by experimental evidence for the presence of rate/time effects in the so-called quasilinear, reversible, material response range. Several possible generalizations are described, in the general format of hereditary-integral representations for non-equilibrium, stress-type, state variables, both for isotropic as well as anisotropic materials. In particular, thorough discussions are given on the important issues of thermodynamic admissibility requirements for such general descriptions, resulting in a set of explicit mathematical constraints on the associated kernel (relaxation and creep compliance) functions. In addition, a number of explicit, integrated forms are derived, under stress and strain control to facilitate the parametric and qualitative response characteristic studies reported here, as well as to help identify critical factors in the actual experimental characterizations from test data that will be reported in Part II.
    Keywords: Structural Mechanics
    Type: NASA/TM-107493 , NAS 1.15:107493 , E-10791
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential base multiaxial, nonisothermal unified viscoplastic model is obtained. This model possesses one tensorial internal state variable (that is, associated with dislocation substructure) and an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of nonlinear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This nonlinear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated), greatly influences the multiaxial response under non-proportional loading paths, and in the case of nonisothermal histories, introduces an instantaneous thermal softening mechanism proportional to the rate of change in temperature. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. The specific model proposed is characterized for a representative titanium alloy commonly used as the matrix material in SiC fiber reinforced composites, i.e., TIMETAL 21S. Verification of the proposed model is shown using 'specialized' non-standard isothermal and thermomechanical deformation tests.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-106926 , E-9644 , NAS 1.15:106926 , Symposium on Thermomechanical Fatigue Behavior of Materials; Nov 13, 1994 - Nov 18, 1994; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...