ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • forest damage  (1)
  • lignite  (1)
  • 1995-1999  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 168-169 (1995), S. 505-511 
    ISSN: 1573-5036
    Keywords: fertilization ; forest damage ; magnesium deficiency ; magnesium hydroxide ; Norway spruce ; typical Dystrochrept
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Main objective of this study was to test the effects of Mg(OH)2-fertilization in a Norway spruce ecosystem showing severe symptoms of Mg-deficiency. The site is characterized by high atmospheric inputs with deposition rates of 1.25 kg H, 42 kg S, and 32 kg N per ha and year. The typic Dystrochrept derived from granite is acidified down to greater depths. The pH-values in soil solution of the organic surface layer and the upper mineral soil are around 3.5. Concentrations of Al, SO4 2-, and especially NO3 - and DOC are very high. The element balance indicates a significant influence of N-inputs and processes of N-turnover on the chemical status of the soil and probably on tree nutrition. Nitrification in the upper mineral soil leads to a transformation of a major part of NH4 + into NO3 -, which is quantitatively leached, resulting in an ecosystem-internal H+-production of 1.8 keq ha-1yr-1. NO3 - and SO4 2- govern the seepage output from the ecosystem. Mg(OH)2 fertilization resulted in manifold increased Mg2+ concentrations in soil solution down to 70 cm soil depth and to a significant increase of pH down to 25 cm mineral soil depth. Nitrate concentrations were elevated after fertilization, but decreased within 15 months below the level of the control plot. As a mean over the whole experimental period, N-output was not increased by fertilization. Despite an elevated internal proton production due to nitrification, acid buffering in the soil was clearly increased, but enhanced Al-mobilization was not observed. Mg/Al- and Ca/H-ratios in soil solution indicate much more favourable conditions for fine root growth. Fertilization also increased the amount of exchangeable Mg down to 40cm mineral soil depth. Mg contents in current-year needles increased after three vegetation periods. Thirty months after application, only 10% and 4% of the fertilized Mg had left the organic surface layer and the mineral soil with seepage water output, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: compost ; fly ash ; lignite ; minesite reclamation ; sewage sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Due to a large reclamation (recultivation) demand in the Lusatian lignite mining district, efficient strategies for the rehabilitation of abandoned mine sites are needed. A field study was conducted for comparing the effects of three different fertilizer treatments (mineral fertilizer, sewage sludge and compost) on soil solution chemistry of both a lignite and pyrite containing spoil as well as a lignite and pyrite free spoil. The lignite and pyrite containing spoil was ameliorated with fly ash from a lignite power plant (17–21 t ha−1 CaO), whereas the lignite and pyrite free site received 7.5 t ha−1 CaO in form of limestone. Fertilizer application rates were: mineral fertilizer 120 N, 100 P and 80 K kg ha−1. 19 t ha−1 sewage sludge and 22 t ha−1 compost were applied. Soil solution was sampled in 20, 60 and 130 cm depth for the period of 16 months. Solution was collected every fortnight and analysed for pH, EC, Ca2+, Mg2+, K+, Na+, Fen+, Aln+, Mn2+, Zn2+, NO3 −, NH4 +, SO4 2−, Cl−, PO4 3−, Cinorg and DOC. Lignite and pyrite containing spoil differed clearly from lignite and pyrite free spoil regarding soil solution concentrations and composition. Acidity (H+) produced by pyrite oxidation led to an enhanced weathering of minerals and, therefore, to at least 10 fold higher soil solution concentrations compared to the lignite and pyrite free site. Major ions in solution of the lignite and pyrite containing site were Ca2+, Mg2+, Fen+, Aln+ and SO4 2−, whereas soil solution at the lignite and pyrite free site was dominated by Ca2+, Mg2+ and SO4 2−. At both sites application of mineral fertilizer led to an immediate but short term (about 1 month) increase of NO3 −, NH4 + and K+ concentrations in soil solution down to a depth of 130 cm. Application of sewage sludge caused a long term (about 16 months) increase of NO3 3 − in the topsoil, whereas NO3 − concentrations in the subsoil were significantly lower compared to the mineral fertilizer plot. Compost application resulted in a strong long-term increase of K+ in soil solution, whereas NO3 − concentrations did not increase. Concentrations of PO4 3− in soil solution depend on solution pH and were not correlated with any treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...