ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Sprache
Ergebnisse pro Seite
Sortieren nach
Sortierung
Anzahl gespeicherter Suchen in der Suchhistorie
E-Mail-Adresse
Voreingestelltes Exportformat
Voreingestellte Zeichencodierung für Export
Anordnung der Filter
Maximale Anzahl angezeigter Filter
Autovervollständigung
Themen (Es wird nur nach Zeitschriften und Artikeln gesucht, die zu einem oder mehreren der ausgewählten Themen gehören)
Feed-Format
Anzahl der Ergebnisse pro Feed
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • differentiation  (6)
  • transcription factors  (3)
  • 1995-1999  (9)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    ISSN: 1573-4978
    Schlagwort(e): chromatin structure ; differentiation ; nuclear matrix ; osteoblast ; transcription ; vitamin D
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Influences of promoter regulatory elements that are responsive to basal and tissue-restricted transactivation factors, steroid hormones, growth factors and other physiologic mediators has provided the basis for understanding regulatory mechanisms contributing to developmental expression of osteocalcin, tissue specificity and biological activity (reviewed in [1–3]). These regulatory elements and cognate transcription factors support postproliferative transcriptional activation and steroid hormone (e.g. vitamin D) enhancement at the onset of extracellular matrix mineralization during osteoblast differentiation. Three parameters of nuclear structure contribute to osteocalcin gene transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of developmental as well as phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented which are consistent with involvement of multiple levels of nuclear architecture in tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization and the nuclear matrix are considered which influence transcription of the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-4978
    Schlagwort(e): gene expression ; nuclear matrix proteins ; ocular lens epithelial cells ; transcription factors
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Association of transcription factors with the nuclear matrix represents a mechanism by which nuclear architecture may influence transcriptional control of gene expression. This investigation examines nuclear matrix associated proteins (NMP's) isolated from ocular lens epithelial cells by monitoring DNA binding activities using consensus oligonucleotides recognized by the transcription factors YY1, AML-1, AP-1, SP-1 and ATF. The nuclear matrix fractions tested included an immortilized human lens epithelial cell line containing the SV40 large T-antigen, and two mouse lens epithelial cell lines derived from either a normal mouse or a cataract mouse. A rabbit epidermal epithelial cell line and HeLa cells were also included in this study for comparison. The data from these experiments reveal that ubiquitously represented and tissue restricted regulatory proteins are associated with nuclear matrix of lens epithelial cells. The functional significance of the nuclear matrix association of these transcription factors remains to be determined. However, our findings raise the possibility that the transcription factors associated with the nuclear matrix could have specific roles in gene regulation and eye tissue development.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 64 (1997), S. 106-116 
    ISSN: 0730-2312
    Schlagwort(e): osteoblasts ; proliferation ; growth control ; differential display ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Fetal rat calvarial-derived osteoblasts in vitro (ROB) reinitiate a developmental program from growth to differentiation concomitant with production of a bone tissue-like organized extracellular matrix. To identify novel genes which may mediate this sequence, we isolated total RNA from three stages of the cellular differentiation process (proliferation, extracellular matrix maturation, and mineralization), for screening gene expression by the differential mRNA display technique. Of 15 differentially displayed bands that were analyzed by Northern blot analysis, one prominent 310 nucleotide band was confirmed to be proliferation-stage specific. Northern blot analysis showed a 600-650 nt transcript which was highly expressed in proliferating cells and decreased to trace levels after confluency and throughout the differentiation process. We have designated this transcript PROM-1 (for proliferating cell marker). A full length PROM-1 cDNA of 607 bp was obtained by 5′ RACE. A short open reading frame encoded a putative 37 amino acid peptide with no significant similarity to known sequences. Expression of PROM-1 in the ROS 17/2.8 osteosarcoma cell line was several fold greater than in normal diploid cells and was not downregulated when ROS 17/2.8 cells reached confluency. The relationship of PROM-1 expression to cell growth was also observed in diploid fetal rat lung fibroblasts. Hydroxyurea treatment of proliferating osteoblasts blocked PROM-1 expression; however, its expression was not cell cycle regulated. Upregulation of PROM-1 in response to TGF-β paralleled the stimulatory effects on growth as quantitated by histone gene expression. In conclusion, PROM-1 represents a small cytoplasmic polyA containing RNA whose expression is restricted to the exponential growth period of normal diploid cells; the gene appears to be deregulated in tumor derived cell lines. J. Cell. Biochem. 64:106-116. © 1997 Wiley-Liss, Inc.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 0730-2312
    Schlagwort(e): AML-3 ; transcription factors ; partitioning ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The subnuclear location of transcription factors may functionally contribute to the regulation of gene expression. Several classes of gene regulators associate with the nuclear matrix in a cell type, cell growth, or cell cycle related-manner. To understand control of nuclear matrix-transcription factor interactions during tissue development, we systematically analyzed the subnuclear partitioning of a panel of transcription factors (including NMP-1/YY-1, NMP-2/AML, AP-1, and SP-1) during osteoblast differentiation using biochemical fractionation and gel shift analyses. We show that nuclear matrix association of the tissue-specific AML transcription factor NMP-2, but not the ubiquitous transcription factor YY1, is developmentally upregulated during osteoblast differentiation. Moreover, we show that there are multiple AML isoforms in mature osteoblasts, consistent with the multiplicity of AML factors that are derived from different genes and alternatively spliced cDNAs. These AML isoforms include proteins derived from the AML-3 gene and partition between distinct subcellular compartments. We conclude that the selective partitioning of the YY1 and AML transcription factors with the nuclear matrix involves a discriminatory mechanism that targets different classes and specific isoforms of gene regulatory factors to the nuclear matrix at distinct developmental stages. Our results are consistent with a role for the nuclear matrix in regulating the expression of bone-tissue specific genes during development of the mature osteocytic phenotype. J. Cell. Biochem. 66:123-132, 1997. © 1997 Wiley-Liss, Inc.
    Zusätzliches Material: 3 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 31-49 
    ISSN: 0730-2312
    Schlagwort(e): Bax ; Bcl-2 ; Bcl-X ; bone ; programmed cell death ; p53 ; c-fos ; Msx-2 ; differentiation ; IRF-1 ; IRF-2 ; collagenase gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: We present evidence of cell death by apoptosis during the development of bone-like tissue formation in vitro. Fetal rat calvaria-derived osteoblasts differentiate in vitro, progressing through three stages of maturation: a proliferation period, a matrix maturation period when growth is downregulated and expression of the bone cell phenotype is induced, and a third mineralization stage marked by the expression of bone-specific genes. Here we show for the first time that cells differentiating to the mature bone cell phenotype undergo programmed cell death and express genes regulating apoptosis. Culture conditions that modify expression of the osteoblast phenotype simultaneously modify the incidence of apoptosis. Cell death by apoptosis is directly demonstrated by visualization of degraded DNA into oligonucleosomal fragments after gel electrophoresis. Bcl-XL, an inhibitor of apoptosis, and Bax, which can accelerate apoptosis, are expressed at maximal levels 24 h after initial isolation of the cells and again after day 25 in heavily mineralized bone tissue nodules. Bcl-2 is expressed in a reciprocal manner to its related gene product Bcl-XL with the highest levels observed during the early post-proliferative stages of osteoblast maturation. Expression of p53, c-fos, and the interferon regulatory factors IRF-1 and IRF-2, but not cdc2 or cdk, were also induced in mineralized bone nodules. The upregulation of Msx-2 in association with apoptosis is consistent with its in vivo expression during embryogenesis in areas that will undergo programmed cell death. We propose that cell death by apoptosis is a fundamental component of osteoblast differentiation that contributes to maintaining tissue organization. J. Cell. Biochem. 68:31-49, 1998. © 1998 Wiley-Liss, Inc.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 0730-2312
    Schlagwort(e): AML/CBF/PEBP2 ; regulatory element ; AML-3 ; osteoblasts ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The AML/CBFA family of runt homology domain (rhd) transcription factors regulates expression of mammalian genes of the hematopoietic lineage. AML1, AML2, and AML3 are the three AML genes identified to date which influence myeloid cell growth and differentiation. Recently, AML-related proteins were identified in an osteoblast-specific promoter binding complex that functionally modulates bone-restricted transcription of the osteocalcin gene. In the present study we demonstrate that in primary rat osteoblasts AML-3 is the AML family member present in the osteoblast-specific complex. Antibody specific for AML-3 completely supershifts this complex, in contrast to antibodies with specificity for AML-1 or AML-2. AML-3 is present as a single 5.4 kb transcript in bone tissues. To establish the functional involvement of AML factors in osteoblast differentiation, we pursued antisense strategies to alter expression of rhd genes. Treatment of osteoblast cultures with rhd antisense oligonucleotides significantly decreased three parameters which are linked to differentiation of normal diploid osteoblasts: the representation of alkaline phosphatase-positive cells, osteocalcin production, and the formation of mineralized nodules. Our findings indicate that AML-3 is a key transcription factor in bone cells and that the activity of rhd proteins is required for completion of osteoblast differentiation. J. Cell. Biochem. 66:1-8, 1997. © 1997 Wiley-Liss, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 0730-2312
    Schlagwort(e): differentiation ; osteoblasts ; cyclin E-associated kinase ; cyclin dependent kinase inhibitors ; RB related proteins ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Spontaneous differentiation of normal diploid osteoblasts in culture is accompanied by increased cyclin E associated kinase activity on (1) the retinoblastoma susceptibility protein pRB, (2) the p107 RB related protein, and (3) two endogenous cyclin E-associated substrates of 78 and 105 kD. Activity of the differentiation-related cyclin E complexes (diff.ECx) is not recovered in cdc2 or cdk2 immunoprecipitates. Phosphorylation of both the 105 kD endogenous substrate and the p107 exogenous substrate is sensitive to inhibitory activity (diff.ECx-i) present in proliferating osteoblasts. This inhibitory activity is readily recruited by the cyclin E complexes of differentiated osteoblasts but is not found in cyclin E immunoprecipitates of the proliferating cells themselves. Strong inhibitory activity on diff.ECx kinase activity is excerted by proliferating ROS 17/2.8 osteosarcoma cells. However, unlike the normal diploid cells, the diff.ECx-i activity of proliferating ROS 17/2.8 cells is recovered by cyclin E immunoprecipitation. The cyclin-dependent kinase inhibitor p21CIP1/WAF1 inhibits diff.ECx kinase activity. Thus, our results suggest the existence of a unique regulatory system, possibly involving p21CIP1/WAF1, in which inhibitory activity residing in proliferating cells is preferentially targeted towards differentiation-related cyclin E-associated kinase activity. J. Cell. Biochem. 66:141-152, 1997. © 1997 Wiley-Liss, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 58 (1995), S. 372-379 
    ISSN: 0730-2312
    Schlagwort(e): ATF ; Sp1 ; transcription factors ; cell cycle ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: The proximal promoter of the human H4 histone gene FO108 contains two regions of in vivo protein-DNA interaction, Sites I and II. Electrophoretic mobility shift assays using a radiolabeled DNA probe revealed that several proteins present in HeLa cell nuclear extracts bound specifically to Site I (nt-125 to nt-86). The most prominent complex, designated HiNF-C, and a complex of greater mobility, HiNF-C′, were specifically compatable by an Sp1 consensus oligonucleotide. Fractionation of HiNF-C using wheat germ agglutinin affinity chromatography suggested that, like Sp1, HiNF-C contains N-acetylglucosamine moieties. Two minor complexes of even greater mobility, designated HiNF-E and F, were compatable by ATF consensus oligonucleotides. A DNA probe carrying a site-specific mutation in the distal portion of Site I failed to bind HiNF-E, indicating that this protein associated specifically to this region. UV cross-linking analysis showed that several proteins of different molecular weights interact specifically with Site I. These data indicate that Site I possesses a bipartite structure and that multiple proteins present in HeLa cell nuclear extracts specifically with Site I sequences.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 0730-2312
    Schlagwort(e): AML/CBF/PEBP2 ; CBFa1 ; differentiation ; osteoblasts ; regulatory elements ; transforming growth factor-β ; receptor ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Organization of the transforming growth factor-β (TGF-β) type I receptor (TRI) promoter predicts constitutive transcription, although its activity increases with differentiation status in cultured osteoblasts. Several sequences in the rat TRI promoter comprise cis-acting elements for CBFa (AML/PEBP2α) transcription factors. By gel mobility shift and immunological analyses, a principal osteoblast-derived nuclear factor that binds to these sites is CBFa1(AML-3/PEBP2αA). Rat CBFa1 levels parallel expression of the osteoblast phenotype and increase under conditions that promote mineralized bone nodule formation in vitro. Fusion of CBFa binding sequence from the TRI promoter to enhancer-free transfection vector increases reporter gene expression in cells that possess abundant CBFa1, and overexpression of CBFa increase the activity of transfected native TRI promoter/reporter plasmid. Consequently, phenotype-restricted use of cis-acting elements for CBFa transcription factors can contribute to the high levels of TRI that parallel osteoblast differentiation and to the potent effects of TGF-β on osteoblast function. J. Cell. Biochem. 69:353-363. © 1998 Wiley-Liss, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...