ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • amino-imidazoles  (1)
  • finite elements  (1)
  • 1995-1999  (2)
  • 1
    ISSN: 1572-8854
    Keywords: amino-imidazoles ; intramolecular hydrogen bonds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Both 5-amino-1-(2-hydroxyethyl)imidazole-4-carboxamide (AHIC) and 5-amino-1-(2-chloroethyl)-4-cyanoimidazole (ACCI) have been synthesized and crystallized in the monoclinic space group P21/c, Z = 4, with a = 8.420(2), b = 9.759(2), c = 10.583(2) Å, β = 111.80(2)° for AHIC and a = 6.139(1), b = 8.522(2), c = 15.156(3) Å, β = 96.71(2)° for ACCI. Differences in the molecular geometries of the two compounds are attributed to the differences in the substituents at the 1- and 4-positions of the imidazole ring. The molecular conformation of AHIC is stabilized by intramolecular hydrogen bonding between the 5-amino and the vicinal carboxamide moiety, resulting in an extended planar structural pattern. The presence of the cyano group in the 4-position of ACCI prevents the formation of such an intramolecular hydrogen bond. Both the crystal structures are stabilized by networks of intermolecular hydrogen bonds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 981-991 
    ISSN: 0271-2091
    Keywords: finite elements ; compressible flow ; space-time formulation ; moving components ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical simulation capability for the injector flow of a regenerative liquid propellant gun (RLPG) is presented. The problem involves fairly complex geometries and two pistons in relative motion; therefore a stabilized space-time finite element formulation developed earlier and capable of handling flows with moving mechanical components is used. In addition to the specifics of the numerical method, its application to a 30 mm RLPG test firing is discussed. The computational data from the simulation of this test case are interpreted to provide information on flow characteristics, with emphasis on the tendency of the flow to separate from the injection orifice boundary of the test problem. In addition, the computations provided insight into the behaviour of the flow entering the combustion chamber.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...