ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pinus nigra (Arnold)  (1)
  • forest damage  (1)
  • 1995-1999  (2)
Collection
Publisher
Years
  • 1995-1999  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 168-169 (1995), S. 505-511 
    ISSN: 1573-5036
    Keywords: fertilization ; forest damage ; magnesium deficiency ; magnesium hydroxide ; Norway spruce ; typical Dystrochrept
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Main objective of this study was to test the effects of Mg(OH)2-fertilization in a Norway spruce ecosystem showing severe symptoms of Mg-deficiency. The site is characterized by high atmospheric inputs with deposition rates of 1.25 kg H, 42 kg S, and 32 kg N per ha and year. The typic Dystrochrept derived from granite is acidified down to greater depths. The pH-values in soil solution of the organic surface layer and the upper mineral soil are around 3.5. Concentrations of Al, SO4 2-, and especially NO3 - and DOC are very high. The element balance indicates a significant influence of N-inputs and processes of N-turnover on the chemical status of the soil and probably on tree nutrition. Nitrification in the upper mineral soil leads to a transformation of a major part of NH4 + into NO3 -, which is quantitatively leached, resulting in an ecosystem-internal H+-production of 1.8 keq ha-1yr-1. NO3 - and SO4 2- govern the seepage output from the ecosystem. Mg(OH)2 fertilization resulted in manifold increased Mg2+ concentrations in soil solution down to 70 cm soil depth and to a significant increase of pH down to 25 cm mineral soil depth. Nitrate concentrations were elevated after fertilization, but decreased within 15 months below the level of the control plot. As a mean over the whole experimental period, N-output was not increased by fertilization. Despite an elevated internal proton production due to nitrification, acid buffering in the soil was clearly increased, but enhanced Al-mobilization was not observed. Mg/Al- and Ca/H-ratios in soil solution indicate much more favourable conditions for fine root growth. Fertilization also increased the amount of exchangeable Mg down to 40cm mineral soil depth. Mg contents in current-year needles increased after three vegetation periods. Thirty months after application, only 10% and 4% of the fertilized Mg had left the organic surface layer and the mineral soil with seepage water output, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Ash application ; mineral formation ; mineral weathering ; Pinus nigra (Arnold) ; Pinus sylvestris (L.) ; pyrite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Lignite and pyrite contents in the dump materials of the Lusatian opencast mining district in East Germany result in high acidification and salinization potentials. These extreme conditions require considerable amounts of alkaline materials like ash or lime to enable recultivation and revegetation. Investigations at chronosequence sites on different mining substrates show characteristic developments of the soil solution chemistry. Processes like weathering of primary and formation of secondary mineral phases, acid production and buffering, and their impacts on both the solid and the liquid soil phase result in high temporal and spatial dynamics especially in the initial phase of soil and ecosystem development. To study these processes we continuously collected soil solutions from different soil depths at seven sites with two representative soil substrates. All sites were afforested with pine and cover stand ages from 1 to 60 yr. The results show that actual pyrite oxidation occurs at the youngest sites on lignite and pyrite containing substrates leading to extremely low pH values and high Fen+ and SO4 2- concentrations. The considerable acid production causes weathering of aluminium silicates resulting in high Aln+ concentrations. Ca2+ concentrations are unexpectedly high even at low pH showing no correlation to amelioration amounts or depths. Therefore it seems most probable that these mining substrates contain geogenic Ca sources. The transport of dissolved weathering products is limited due to low leaching rates enabling formation of secondary phases which control the actual composition of the soil solution. Depth gradients of the soil solution composition at the chronosequence sites point to a gradual transport and leaching of these secondary phases from the soil profiles. Soil solution composition and dynamics at lignite and pyrite free sites show completely different patterns and have a higher potential for successful sustainable recultivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...