ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-03-01
    Description: The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-beta-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewis, M -- Chang, G -- Horton, N C -- Kercher, M A -- Pace, H C -- Schumacher, M A -- Brennan, R G -- Lu, P -- 2-T32-GM082745/GM/NIGMS NIH HHS/ -- GM44617/GM/NIGMS NIH HHS/ -- P41-RR06017/RR/NCRR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1247-54.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johnson Research Foundation, University of Pennsylvania, Philadelphia 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638105" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacterial Proteins/*chemistry/genetics/metabolism ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Cyclic AMP Receptor Protein/metabolism ; DNA, Bacterial/chemistry/*metabolism ; *Escherichia coli Proteins ; Hydrogen Bonding ; Isopropyl Thiogalactoside/*metabolism ; *Lac Operon ; Lac Repressors ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Point Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-03-29
    Description: Genetically encoded libraries of peptides and oligonucleotides are well suited for the identification of ligands for many macromolecules. A major drawback of these techniques is that the resultant ligands are subject to degradation by naturally occurring enzymes. Here, a method is described that uses a biologically encoded library for the identification of D-peptide ligands, which should be resistant to proteolytic degradation. In this approach, a protein is synthesized in the D-amino acid configuration and used to select peptides from a phage display library expressing random L-amino acid peptides. For reasons of symmetry, the mirror images of these phage-displayed peptides interact with the target protein of the natural handedness. The value of this approach was demonstrated by the identification of a cyclic D-peptide that interacts with the Src homology 3 domain of c- SRC. Nuclear magnetic resonance studies indicate that the binding site for this D-peptide partially overlaps the site for the physiological ligands of this domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, T N -- Mayr, L M -- Minor, D L Jr -- Milhollen, M A -- Burgess, M W -- Kim, P S -- New York, N.Y. -- Science. 1996 Mar 29;271(5257):1854-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596952" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteriophages ; Base Sequence ; Binding Sites ; Chickens ; Cloning, Molecular ; Gene Library ; Ligands ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Peptides/chemistry/genetics/*metabolism ; Peptides, Cyclic/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins pp60(c-src)/chemistry/*metabolism ; Stereoisomerism ; *src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...