ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words helicopter dynamics  (1)
  • 1995-1999  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 69 (1999), S. 68-82 
    ISSN: 1432-0681
    Keywords: Key words helicopter dynamics ; rotor/fuselage coupling ; aeroelastic response ; time-dependent periodic system ; nonlinearity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary The aeroelastic response analysis of a coupled rotor/fuselage system is approached by iterative solution of the blade aeroelastic response in the non-inertial reference frame fixed on the hub, and the periodic response of the fuselage in the inertial reference frame. A model of the coupled system hinged with the flap and lag hinges, the pitching bearing which may not coincide with the hinges, and the sweeping-blade configuration is established. The moderate-deflection beam theory and the two-dimensional quasi-steady aerodynamic model are employed to model the aeroelastic blade, all the kinetic and inertial factors are taken into account in a unified manner. A five-nodes, 15-DOFs pre-twisted nonuniform beam element is developed for the discretization of the blade, three rigid-body-motion DOFs are introduced for the motion of the hinges and the bearing. The Hamilton's principle is employed to evaluate the equation of motion of the blade. The derived nonlinear ordinary differential equations with time-dependent periodic coefficients are solved by a modified quasi-linearization method, which is developed for the higher DOF periodic system. The resulting periodic forces and moments exerted on the fuselage by all the blades are evaluated every time, when the converged nonlinear periodic response of the blade is obtained under the consideration of the equilibrium of the blades. The fuselage structure is simplified to be a beam structure, the governing equation is established in the inertial reference frame and a two-nodes beam element is used to discretize the flexible fuselage. The periodic response of the fuselage is solved by a simple shooting method. The iteration of the rotor/fuselage response is continued, until the aeroelastic responses of the blade and the fuselage converge simultaneously. Both the hovering and the forward flight states can be considered. The results of a computed numerical example by the developed program are presented to verify in practice the economy of the modeling as well as the reliability and efficiency of the corresponding solving methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...