ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Key words: Human chondrocyte — Pulsed electromagnetic field —3H-thymidine — Nasal — Articular.  (1)
  • sex vesicle  (1)
  • 1995-1999  (2)
Collection
  • Articles  (2)
Keywords
  • Key words: Human chondrocyte — Pulsed electromagnetic field —3H-thymidine — Nasal — Articular.  (1)
  • sex vesicle  (1)
  • human bivalent 15  (1)
  • meiosis  (1)
Publisher
Years
  • 1995-1999  (2)
Year
Topic
  • 1
    ISSN: 1432-0827
    Keywords: Key words: Human chondrocyte — Pulsed electromagnetic field —3H-thymidine — Nasal — Articular.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. 3H-thymidine incorporation was studied in cultured human nasal and articular chondrocytes exposed to low-energy, low-frequency pulsed electromagnetic fields (PEMFs) (75 Hz, 2.3 mT). The reverse transcriptase polymerase chain reaction (RT-PCR) analysis shows that human secondary chondrocytes derived from both nasal and articular cartilage express collagen type II mRNA, which is a specific marker of the chondrocyte phenotype. In a preliminary series of experiments, cells were exposed to PEMF for different time periods ranging from 6 to 30 hours (time-course), in medium supplemented with 10% or 0.5% fetal calf serum (FCS) and in serum-free medium. The ratios between the 3H-thymidine incorporation in PEMFs and control cultures show an increase of the cell proliferation in cultures exposed to PEMFs when serum is present in the culture medium, whereas no effect was observed in serum-free conditions. The increase in DNA synthesis, induced by PEMFs, was then evaluated only at the times of maximum induction and the results were analyzed by the three-factor analysis of variance (ANOVA). The data presented in this study show that even if 3H-thymidine incorporation is higher in nasal than in articular chondrocytes, PEMF induce an increase in the proliferation of both cell types. Moreover, the concentration of FCS in the culture medium greatly influences the proliferative response of human chondrocytes to the PEMF exposure. Though normal human osteoblast cells increase their proliferation when exposed to PEMFs if only 10% FCS is present in the medium, human chondrocytes are able to increase their cell proliferation when exposed to PEMFs in the presence of both 0.5% and 10% of FCS in the medium. The results obtained may help to explain the basic mechanisms of PEMF stimulation of fracture healing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6849
    Keywords: human bivalent 15 ; meiosis ; sex vesicle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using fluorescent in-situ hybridization, we investigated the positioning of different human bivalents at the pachytene stage of normal male meiosis. We showed that, in about 35% of nuclei, the pericentromeric region of bivalent 15 is closely associated with the sex vesicle (SV). This behaviour may be linked to the presence of three domains in the pericentromeric region of chromosome 15: a large imprinted domain, a nucleolar organizing region (NOR), and a heterochromatic block. In order to define the domains of chromosome 15 involved in this association, we analysed the meiotic behaviour of other bivalents with similar domains: human bivalent 11 and mouse bivalent 7, bearing imprinted domains, other human acrocentric bivalents bearing a NOR, and the human bivalents 1, 9 and 16 containing a heterochromatic region. None of these bivalents were as frequently associated with the SV as the human bivalent 15. Nevertheless, we suggest that the bivalent 15 heterochromatin may be responsible for the association because of two properties: its telomeric location on chromosome 15 and its strong sequence homology with the Yq heterochromatin. This phenomenon could explain the high frequency of translocations between the chromosome 15 and the X or Y chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...