ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Root morphology  (2)
  • Humans
  • 1995-1999  (2)
  • Geosciences  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 388-398 
    ISSN: 1432-0789
    Keywords: Elevated CO2 ; Mycorrhizal associations ; Root morphology ; Nutrient availability ; Rhizodeposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The impact of increasing concentrations of atmospheric CO2 upon plant physiology has been widely investigated. Plant, and in particular root, growth is nearly always enhanced as a direct consequence of CO2 enrichment, with C3 species generally more responsive than C4 species. Such alterations in plant productivity will have consequence for below-ground processes and increased carbon allocation to the roots may favour symbiotic relationships. This paper discusses the current information available for the consequences of these changes upon mycorrhizal relationships. Generally mycorrhizal plants grown under CO2 enrichment show enhanced phosphorus uptake but nitrogen uptake is unaffected. This increased nutrient uptake is not correlated with increased mycorrhizal colonization of the roots. Similarly root exudation does not increase under CO2 enrichment but qualitative differences have yet to be assessed. However, it is predicted that total rhizodeposition of materials will increase as will litter inputs, although mineral and biochemical alterations to these plant derived inputs may occur. The consequences of such changes within the rhizosphere are discussed and future research
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 388-398 
    ISSN: 1432-0789
    Keywords: Key words Elevated CO2 ; Mycorrhizal associations ; Root morphology ; Nutrient availability ; Rhizodeposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The impact of increasing concentrations of atmospheric CO2 upon plant physiology has been widely investigated. Plant, and in particular root, growth is nearly always enhanced as a direct consequence of CO2 enrichment, with C3 species generally more responsive than C4 species. Such alterations in plant productivity will have consequence for below-ground processes and increased carbon allocation to the roots may favour symbiotic relationships. This paper discusses the current information available for the consequences of these changes upon mycorrhizal relationships. Generally mycorrhizal plants grown under CO2 enrichment show enhanced phosphorus uptake but nitrogen uptake is unaffected. This increased nutrient uptake is not correlated with increased mycorrhizal colonization of the roots. Similarly root exudation does not increase under CO2 enrichment but qualitative differences have yet to be assessed. However, it is predicted that total rhizodeposition of materials will increase as will litter inputs, although mineral and biochemical alterations to these plant derived inputs may occur. The consequences of such changes within the rhizosphere are discussed and future research priorities identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...