ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environment Pollution  (6)
  • Oomycete  (1)
  • 1995-1999  (7)
  • 1
    ISSN: 1432-0983
    Keywords: Transgene inactivation ; Silencing ; Oomycete ; Phythophthora infestans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mitotic and meiotic stabilities of transgenes were evaluated in the oomycete, Phytophthora infestans. Genes encoding β-glucuronidase (GUS), neomycin phosphotransferase (NPT) and hygromycin phosphotransferase (HPT), fused to one of six promoters from P. infestans or other oomycetes, were usually stably expressed during continued asexual culture and transmitted to progeny. However, the activity of these genes became undetectable in many strains during asexual or sexual propagation. Over 33 months of growth, transgene expression stopped each month in 1–3% of the transformants. Silencing of the genes was not associated with their deletion, mutation, or hypermethylation. The conformation of the integrated sequences was similar in strains destined to continue or terminate expression of the transgenes. Expression of the genes was not associated with a loss of fitness during growth in vitro and in planta, which might otherwise have selected for silencing events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Interest in the distribution of black carbon (soot) aerosol (BCA) in the atmosphere is based on the following: (1) Because BCA has the highest absorption cross section of any compound know, it can absorb solar radiation to cause atmospheric warming; (2) Because BCA is a strong adsorber of gases, it can catalyze heterogeneous chemical reactions to modify the chemical composition of the atmosphere; (3) If aircraft emission is the major source of BCA, it can serve as an atmospheric tracer of aircraft exhaust. We collect BCA particles as small as 0.02 micrometers by wires mounted on both the DC-8 and ER-2 aircraft. After return to the laboratory, the wires are examined with a field emission scanning electron microscope to identify BCA particles by their characteristics morphology, Typically, BCA exists in the atmosphere as small particles of complex morphology. The particle sizes at the source are measured in tens of Angstrom units; after a short residence time in the atmosphere, individual particles coalesce to loosely packed agglomerates of typical dimensions 0.01 to 0.1 micrometer. We approximate the size of each BCA aggregate by that of a sphere of equivalent volume. This is done by computing the volume of a sphere whose diameter is the mean between averaged minimum and maximum dimensions of the BCA particle. While this procedure probably underestimates the actual surface area, it permits us to compare BCA size distributions among themselves and with other types of aerosols.
    Keywords: Environment Pollution
    Type: 1st AIAA Aircraft Engineering, Technology and Operations Congress; Sep 19, 1995 - Sep 21, 1995; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4〈EISOOT〈1.3E-3 g/kgFUEL, and EICN 8E14 and 1.3E16 particles/kgFUEL (for 75 and 675 ppmm fuel-S). The sulfur (gas) to H2SO4 (particle) conversion efficiency is between 10% and 25%.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Soot aerosol from aircraft has been implicated to cause long-term ozone depletion at mid-latitudes in the lower stratosphere at a rate of approx. equals 5%,per decade. During the 1996 SUCCESS field campaign, we sampling aerosols in the exhaust wake of a Boeing 757 aircraft and determined emission indices for sulfuric acid (EIH2SO4=4.8E-2 and 5.7E- 1. g/kgFUEL for 75 and 675 ppm fuel-sulfur, respectively) and soot (EIsoot=7.5E-4 g/kgFUEL). The corresponding fuel-sulfur to H2SO4 conversion efficiency was 25 % and 30%,respctively. Applying the H2SO4 emission index to the 1990 fuel by the world's commercial fleets of 1.3E11 kg, a conversion efficiency of 30% would have led to an annual contribution to the atmospheric sulfur budget by aircraft of 2.E7 kg H2SO4, if the fuels averaged 500 ppmm.The soot emission index given above yielded a 1990 injection of soot aerosol by aircraft of 1.E5 kg. Thus, soot amounts to only one half of one percent of the aerosol generated by aircraft. The fractal nature of soot may increase its actual surface area by about a factor of 10. The findings, however, of (1) stratospheric soot loadings commensurate with aircraft fuel consumption, based on the emission index given above and the assumption of stratospheric residence times of the order of one year; and (2) a trend in stratospheric soot loading of approx.6% per year since 1981, similar to the annual increase of aircraft operations since that time, implicate aircraft as stratospheric polluters. A trend similar to soot of H2SO4 aerosol loading could not be deciphered, neither from in situ measurements nor SAGE II extinction, against the "noise" due to volcanic eruptions, The current single scatter albedo of the stratospheric aerosol is omega = 0.993+/-0.004.
    Keywords: Environment Pollution
    Type: 1997 Fall Meeting of the American Geophysical Union; Dec 08, 1997 - Dec 12, 1997; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Interest in the distribution of black carbon (soot) aerosol (BCA) in the atmosphere is warranted for the following reasons: (1) BCA has the highest absorption cross section of any compound known, thus it can absorb solar radiation to cause atmospheric warming; (2) BCA is a strong adsorber of gases, thus it can catalyze heterogeneous chemical reactions to modify the chemical composition of the atmosphere; (3) If aircraft emission is the major source of atmospheric BCA, it can serve as an atmospheric tracer of aircraft exhaust. We collect BCA particles greater than or equal to 0.02 micrometer diameter by wires mounted on both the DC-8 and ER-2 aircraft. After return to the laboratory, the wires are examined with a field emission scanning electron microscope to identify BCA particles by their characteristic morphology. Typically, BCA exists in the atmosphere as small particles of complex morphology. The particle sizes at the source are measured in tens of Angstrom units; after a short residence time in the atmosphere, individual particles coalesce to loosely packed agglomerates of typical dimensions 0.01 to 0.1 micrometer. We approximate the size of each BCA aggregate by that of a sphere of equivalent volume. This is done by computing the volume of a sphere whose diameter is the mean between averaged minimum and maximum dimensions of the BCA particle. While this procedure probably underestimates the actual surface area, it permits us to compare BCA size distributions among themselves and with other types of aerosols. When statistically justified, we fit lognormal distributions to the data points to determine number concentrations, geometric mean radii, standard deviations, BCA surface areas and volumes. Results to date permit the following conclusions: (1) BCA concentration in the northern stratosphere averages 0.6 ng per cubic meters. This amount is one part in 10(exp 4) after a volcanic eruption (e.g., Pinatubo) increasing to about one percent during volcanic quiescence. In the northern troposphere, BCA concentration averages 3.2 ng per cubic meters, or 0.3 percent of the background aerosol. (2) Applying an BCA emission index EI(BCA)=5 x 10(exp -5), measured in the exhaust wake of a Concorde supersonic jet aircraft, to realistic estimates of fuel burnt by the current and projected fleets permits us to conclude that: (i) Most BCA in the northern stratosphere results from aircraft emissions; (ii) Most BCA in the northern troposphere results from other sources than aircraft; (iii) A projected supersonic fleet will increase the northern stratospheric BCA concentration by one order of magnitude, unless the emission index is substantially reduced. (3) A strong gradient between the northern and southern hemispheres indicates that mixing across the equator is greatly inhibited in relation to atmospheric residence times of BCA. (4) The single scatter albedo of BCA/"background" aerosol mixtures suggests a cooling effect for most of the globe; an exemption is the Arctic because of the high surface albedo of the snow/ice covered earth's surface.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: A significant increase in sulfuric acid aerosol concentration was detected above 10 km pressure altitude during a cross-corridor flight out of Shannon on October 23, 1997. The source of this aerosol is ascribed to commercial aircraft operations in flight corridors above 10 km, because (1) a stable atmosphere prevented vertical air mass exchanges and thus eliminated surface sources, (2) air mass back trajectories documented the absence of remote continental sources, and (3) temperature profiler data showed the tropopause at least one kilometers above flight altitude throughout the flight. Particle volatility identified 70% H2SO4, 20% (NH4)2SO4 and 10% nonvolatile aerosol in the proximity of flight corridors, and (10-30)% H2SO4, up to 50% (NH4)2SO4, and (40-60)% nonvolatile aerosols in air that was not affected by aircraft operations below 10 km. Only a very small fraction of the nonvolatile particles (determined with a condensation nucleus counter) could be morphologically identified as soot aerosol (validated by scanning electron microscopy of wire impactor samples). The newly formed H2SO4 particles did not measurably affect surface area and volume of the background aerosol due to their small size, hence did not affect radiative transfer directly.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Aerosol from aircraft can affect the environment in three ways: First, soot aerosol has been implicated to cause Icing-tern ozone depletion at mid-latitudes in the lower stratosphere at a rate of approx. 5% per decade. This effect is in addition and unrelated to the polar ozone holes which are strongly influenced by heterogeneous chemistry on polar stratospheric clouds. Second, the most obvious effect of jet aircraft is the formation of visible contrails in the upper troposphere. The Salt Lake City region experienced an 8% increase in cirrus cloud cover over a 15-year period which covariates with an increase in regional commercial air traffic. If soot particles act as freezing nuclei to cause contrail formation heterogeneously, they would be linked to a secondary effect to cloud modification that very likely is climatologically important. Third, a buildup of soot aerosol could reduce the single scatter albedo of stratospheric aerosol from 0.993+0.004 to 0.98, a critical value that has been postulated to separate stratospheric cooling from warming. Thus arises an important question: Do aircraft emit sufficient amounts of soot to have detrimental effects and warrant emission controls? During the 1996 SUCCESS field campaign, we sampled aerosols in the exhaust wake of a Boeing 757 aircraft and determined emission indices for sulfuric acid (EI(sub H2SO4) = 9.0E-2 and 5.0E-1 g/kg (sub FUEL) for 75 and 675 ppm fuel-sulfur, respectively) and soot aerosol (2.2E-3 less than EI(sub SOOT) = l.lE-2 g/kg (sub FUEL)). The soot particle analysis accounted for their fractal nature, determined electron-microscopically, which enhanced the surface area by a factor of 26 and the volume 11-fold over equivalent-volume spheres. The corresponding fuel-sulfur to H2SO4 conversion efficiency was 10% (for 675 ppmm fuel-S) and 37% (for 75 ppmm fuel-S). Applying the H2SO4 emission index to the 1990 fuel use by the worlds commercial fleets of 1.3E11 kg, a conversion efficiency of 30% of 500 ppmm fuel-S would have led to an annual contribution to the atmospheric sulfur budget by aircraft of 2.E7 kg H2SO4. This is about one part in 1.E4 of anthropogenic sulfate from other sources. The soot emission index given above yielded a 1990 injection of soot aerosol by aircraft of 1.E6 kg. Thus, soot amounts to only five percent of the aerosol generated by aircraft. Its reactivity with ozone would have to be 20 times that of sulfuric acid particles to make it chemically significant. Nevertheless, the findings, of stratospheric soot loadings commensurate with aircraft fuel consumption, based on the emission index given above and the assumption of stratospheric residence times of the order of one year implicate aircraft as stratospheric polluters. A trend similar to soot of H2SO4 aerosol loading could not be deciphered, neither from in situ measurements nor SAGE II satellite extinction, against the "noise" due to volcanic eruptions. Observation of soot particles at 20 km altitude which, if emitted by aircraft were generated at 10-12 km altitude, suggests a displacement of those particles against gravity. Because eddy mixing is virtually absent in the lower stratosphere and isentropic mixing explains lofting to only about 15 km, radiometric forces acting on morphologically and chemically asymmetric soot particles must be considered a possibility. The consequence could be an extended residence time of soot against that of sulfuric acid aerosol that would lower the single scatter albedo with time.
    Keywords: Environment Pollution
    Type: Fifth International Aerosol Conference; 12 - 18 Sept. 1998; Edinburgh, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...