ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words: Bone metabolic markers — Predictor — Osteoporosis — Epidemiology — Bone mineral density.  (1)
  • statistical multiplexer  (1)
  • 1995-1999  (2)
  • 1
    ISSN: 1432-0827
    Keywords: Key words: Bone metabolic markers — Predictor — Osteoporosis — Epidemiology — Bone mineral density.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. The purpose of this study was to ascertain whether biochemical markers of bone turnover predict bone loss. The survey was carried out in Taiji, Wakayama Prefecture, Japan. From a list of inhabitants aged 40–79 years, 400 participants (50 men and 50 women in each of four age groups) were selected randomly. Bone mineral density (BMD) was measured, and blood and urine samples of all participants were examined to obtain values for eight biochemical markers: alkaline phosphatase (ALP), bone Gla protein (BGP), type I procollagen (carboxyterminal peptide of type I procollagen; PICP), cross-linked carboxyterminal telopeptide region of type I collagen (ICTP), and urinary excretion of calcium (Ca), phosphate (P), pyridinoline (Pyr), and deoxypyridinoline (D-Pyr). Each marker was evaluated as a predictor of the rate of bone change in lumbar spine and femoral neck BMD over a 3-year period. The value of Pyr was significantly related to the change of lumbar spine BMD in men (P= 0.009), and that of BGP was found to be significant in women (P= 0.045). By contrast, none of the bone markers significantly correlated with bone loss at the femoral neck. The coefficient of determination at the lumbar spine was 5% and 7% at the femoral neck only. We conclude that biochemical markers of bone turnover cannot predict bone loss rates in middle-aged or elderly Japanese men and women over a 3-year period with sufficient accuracy for use in clinical decision making.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Discrete event dynamic systems 5 (1995), S. 115-140 
    ISSN: 1573-7594
    Keywords: time-parallel simulation ; asynchronous transfer mode networks ; burst-level simulation ; statistical multiplexer ; cellloss ratio ; broadband integrated services digital network
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The simulation of high-speed telecommunication systems such as ATM (Asynchronous Transfer Mode) networks has generally required excessively long run times. This paper reviews alternative approaches using parallelism to speed up simulations of discrete event systems, and telecommunication networks in particular. Subsequently, a new simulation method is introduced for the fast parallel simulation of a common network element, namely, a work-conserving finite capacity statistical multiplexer of bursty ON/OFF sources arriving on input links of equal peak rate. The primary performance measure of interest is the cell loss ratio, due to buffer overflows. The proposed method is based on two principal techniques: (1) the derivation of low-level (cell level) statistics from a higher level (burst level) simulation and (2) parallel execution of the burst level simulation program. For the latter, atime-division parallel simulation method is used where simulations operating at different intervals of simulated time are executed concurrently on different processors. Both techniques contribute to the overall speedup. Furthermore, these techniques support simulations that are driven by traces of actual network traffic (trace-driven simulation), in addition to standard models for source traffic. An analysis of this technique is described, indicating that it offers excellent potential for delivering good performance. Measurements of an implementation running on a 32 processor KSR-2 multiprocessor demonstrate that, for certain model parameter settings, the simulator is able to simulate up to 10 billion cell arrivals per second of wallclock time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...