ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (3)
  • 1995-1999  (3)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-07-17
    Description: The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.
    Keywords: Earth Resources and Remote Sensing
    Type: Reanalysis; Aug 23, 1999 - Aug 27, 1999; Reading; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Recently, NASA Goddard Earth Observing System (GEOS-1) reanalysis data has been used to provide forcing for the Koster and Suarez Mosaic Land-surface Model (LSM). The LSM was integrated off-line at all global land points for the period of 1983 - 1995 by the Off-line Land- surface GEOS Assimilation system (OLGA). Here, we compare the interannual variability of OLGA, GEOS-1 and surface observing stations temperature and moisture. Particular attention is given to the United States because of the extreme seasons of 1988 and 1993. Furthermore, the comparison of OLGA is extended to include the analysis of data on the'tiles' (different surface types) in the Mosaic LSM. Results indicate that the GEOS-1 near-surface temperature and moisture reasonably represents the interannual variability in more normal years. However, OLGA also simulates the extreme drought and floods years well. The analysis of the tile information shows that the "Bare soil" surface type is most sensitive to the climate extremes. Off-line testing has provided valuable information on the performance of the Mosaic LSM prior to its incorporation into the new version of the GEOS Data Assimilation System and the integration of a new long reanalysis.
    Keywords: Earth Resources and Remote Sensing
    Type: Reanalysis; Aug 23, 1999 - Aug 27, 1999; Reading; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...