ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • carbonate alkalinity  (2)
  • Costa Rica  (1)
  • 1995-1999  (3)
  • 1
    ISSN: 1573-515X
    Keywords: NO3 − reduction ; denitrification ; nitrification ; swamp forest ; lowland rain forest ; tropical streams ; Costa Rica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrate reduction and denitrification were measured in swamp forest streams draining lowland rain forest on Costa Rica's Atlantic slope foothills using the C2H2-block assay and sediment-water nutrient fluxes. Denitrification assays using the C2H2-block technique indicated that the full suite of denitrifying enzymes were present in the sediment but that only a small fraction of the functional activity could be expressed without adding NO3 −. Under optimal conditions, denitrification enzyme activity averaged 15 nmoles cm−3 sediment h−1. Areal NO3 − reduction rates measured from NO3 − loss in the overlying water of sediment-water flux chambers ranged from 65 to 470 umoles m−2 h−1. Oxygen loss rates accompanying NO3 − depletion averaged 750 umoles m−2 h−1. Corrected for denitrification of NO3 − oxidized from NH4 + in the sediment, gross NO3 − reduction rates increase by 130 umoles m−2 h−1, indicating nitrification may be the predominant source of NO3 − for NO3 − reduction in swamp forest stream sediments. Under field conditions approximately 80% of the increase in inorganic N mass along a 1250-m reach of the Salto River was in the form of NO3 − with the balance NH4 + . Scrutiny of potential inorganic N sources suggested that mineralized N released from the streambed was a major source of the inorganic N increase. Despite significant NO3 − reduction potential, swamp forest stream sediments appear to be a source of inorganic N to downstream communities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: carbonate alkalinity ; Chlorella ; redox potential ; sulfate reduction ; uranium ; XANES
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Evaporation ponds in the San Joaquin Valley (SJV), CA, USA that are used for the disposal of irrigation drainage waters, contain elevated levels of U that may be a threat to pond wildlife. The ponds support euryhaline algae, which become incorporated in the sediments as depositional organic matter (OM) – facilitating reducing conditions. Our earlier studies have shown that U in one SJV sediment was primarily present as the highly soluble U(VI) species (as opposed to the less soluble U(IV) species), despite the presence of volatile sulfides. In this research, we investigated the effects of native pond algae (Chlorella) and potential reducing agents on U redox chemistry of SJV pond sediments. San Joaquin Valley pond sediments were equilibrated with natural and synthetic pond inlet waters containing approximately 10 mg U(VI) L-1 to which reducing agents (acetate, sucrose, and alfalfa shoot) were added. The equilibrations were done under oxic (Chlorella only) and O2-limiting conditions (remaining treatments). Sediments were examined for changes in average U oxidation state by X-ray near- edge absorption structure (XANES) spectroscopy and U concentration by ICP-MS. For the alfalfa treatments, a 95 percent loss of U(VI) from solution, the presence of sulfides, and results from the XANES studies suggest U(VI) was reduced to U(IV). Upon exposure to air, the precipitated U was readily oxidized, suggesting the reduced U is susceptible to oxidation. Much less reduction of U(VI) was observed in the other 3 treatments and the solid phase was dominated by U(VI) as in the natural pond sediments. A second study was conducted with pond sediment-water suspensions to determine the effects of controlled PCO2 and low redox potential (Eh) on U solubility. These suspensions were equilibrated at 0.22 and 5.26 kPa PCO2 and allowed to “free-drift” from an oxidized to a reduced state. At high Eh and high PCO2, dissolved U concentrations were higher than in the low PCO2 systems due to greater complexation with CO3. Dissolved U concentrations decreased only under intense sulfate reducing conditions, even at low Eh conditions. It appears that U reduction occurred by chemical reduction via sulfide ion. Comparing the XANES data of the pond sediments with the laboratory-produced solids we conclude that biosorption by algae and bacteria is the dominant mechanism depositing U in the sediments. Even though there are organisms that can use U(VI) as a terminal electron acceptor, we found that sulfate reduction was preferred in these high- SO4 waters. Mixed oxidation state U-solids were preferentially formed in the pond sediments and in the lab except under intense SO4 reducing conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: carbonate alkalinity ; Chlorella ; redox potential ; sulfate reduction ; uranium ; XANES
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Evaporation ponds in the San Joaquin Valley (SJV), CA, USA that are used for the disposal of irrigation drainage waters, contain elevated levels of U that may be a threat to pond wildlife. The ponds support euryhaline algae, which become incorporated in the sediments as depositional organic matter (OM) — facilitating reducing conditions. Our earlier studies have shown that U in one SJV sediment was primarily present as the highly soluble U(VI) species (as opposed to the less soluble U(IV) species), despite the presence of volatile sulfides. In this research, we investigated the effects of native pond algae (Chlorella) and potential reducing agents on U redox chemistry of SJV pond sediments. San Joaquin Valley pond sediments were equilibrated with natural and synthetic pond inlet waters containing approximately 10 mg U(VI) L−1 to which reducing agents (acetate, sucrose, and alfalfa shoot) were added. The equilibrations were done under oxic (Chlorella only) and O2-limiting conditions (remaining treatments). Sediments were examined for changes in average U oxidation state by X-ray near-edge absorption structure (XANES) spectroscopy and U concentration by ICP-MS. For the alfalfa treatments, a 95 percent loss of U(VI) from solution, the presence of sulfides, and results from the XANES studies suggest U(VI) was reduced to U(IV). Upon exposure to air, the precipitated U was readily oxidized, suggesting the reduced U is susceptible to oxidation. Much less reduction of U(VI) was observed in the other 3 treatments and the solid phase was dominated by U(VI) as in the natural pond sediments. A second study was conducted with pond sediment-water suspensions to determine the effects of controlled PCO2 and low redox potential (Eh) on U solubility. These suspensions were equilibrated at 0.22 and 5.26 kPa PCO2 and allowed to “free-drift” from an oxidized to a reduced state. At high Eh and high PCO2, dissolved U concentrations were higher than in the low PCO2 systems due to greater complexation with CO3. Dissolved U concentrations decreased only under intense sulfate reducing conditions, even at low Eh conditions. It appears that U reduction occurred by chemical reduction via sulfide ion. Comparing the XANES data of the pond sediments with the laboratory-produced solids we conclude that biosorption by algae and bacteria is the dominant mechanism depositing U in the sediments. Even though there are organisms that can use U(VI) as a terminal electron acceptor, we found that sulfate reduction was preferred in these high-SO4 waters. Mixed oxidation state U-solids were preferentially formed in the pond sediments and in the lab except under intense SO4 reducing conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...