ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. (5) The scenes can be viewed in 3D using stereo vision. (6) The network bandwidth for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.) This talk will illustrate the use of these new technologies and present a proposal for using these technologies to improve science education.
    Keywords: Computer Systems
    Type: 1st International Symposium on Digital Future; Jan 21, 1997 - Jan 23, 1997; Madrid; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: Understanding the interplay between machines and problems is key to obtaining high performance on parallel machines. This paper investigates the interplay between programming paradigms and communication capabilities of parallel machines. In particular, we explicate the communication capabilities of the IBM SP-2 distributed-memory multiprocessor and the SGI PowerCHALLENGEarray symmetric multiprocessor. Two benchmark problems of bitonic sorting and Fast Fourier Transform are selected for experiments. Communication-efficient algorithms are developed to exploit the overlapping capabilities of the machines. Programs are written in Message-Passing Interface for portability and identical codes are used for both machines. Various data sizes and message sizes are used to test the machines' communication capabilities. Experimental results indicate that the communication performance of the multiprocessors are consistent with the size of messages. The SP-2 is sensitive to message size but yields a much higher communication overlapping because of the communication co-processor. The PowerCHALLENGEarray is not highly sensitive to message size and yields a low communication overlapping. Bitonic sorting yields lower performance compared to FFT due to a smaller computation-to-communication ratio.
    Keywords: Computer Systems
    Type: NAS-96-005
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: The NAS Parallel Benchmarks have been developed at NASA Ames Research Center to study the performance of parallel supercomputers. The eight benchmark problems are specified in a "pencil and paper" fashion. In other words, the complete details of the problem to be solved are given in a technical document, and except for a few restrictions, benchmarkers are free to select the language constructs and implementation techniques best suited for a particular system. These results represent the best results that have been reported to us by the vendors for the specific 3 systems listed. In this report, we present new NPB (Version 1.0) performance results for the following systems: DEC Alpha Server 8400 5/440, Fujitsu VPP Series (VX, VPP300, and VPP700), HP/Convex Exemplar SPP2000, IBM RS/6000 SP P2SC node (120 MHz), NEC SX-4/32, SGI/CRAY T3E, SGI Origin200, and SGI Origin2000. We also report High Performance Fortran (HPF) based NPB results for IBM SP2 Wide Nodes, HP/Convex Exemplar SPP2000, and SGI/CRAY T3D. These results have been submitted by Applied Parallel Research (APR) and Portland Group Inc. (PGI). We also present sustained performance per dollar for Class B LU, SP and BT benchmarks.
    Keywords: Computer Systems
    Type: NAS-96-18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...