ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (2)
  • Chemistry
  • GEOPHYSICS
  • 1995-1999  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 16 (1995), S. 106-112 
    ISSN: 0197-8462
    Keywords: extremely low frequency (ELF) ; magnetic field ; ion cyclotron resonance ; planarian regeneration ; orientation ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Extremely-low-frequency (ELF), low-intensity magnetic fields have been shown to influence cell signaling processes in a variety of systems, both in vivo and in vitro. Similar effects have been demonstrated for nervous system development and neurite outgrowth. We report that regeneration in planaria, which incorporates many of these processes, is also affected by ELF magnetic fields. The rate of cephalic regeneration, reflected by the mean regeneration time (MRT), for planaria populations regenerating under continuous exposure to combined DC (78.4 μT) and AC (60.0 Hz at 10.0 μT peak) magnetic fields applied in parallel was found to be significantly delayed (P ≪ 0.001) by 48 ± 1 h relative to two different types of control populations (MRT ˜ 140 ± 12 h). One control population was exposed to only the AC component of this field combination, while the other experienced only the ambient geomagnetic field. All measurements were conducted in a low-gradient, low-noise magnetics laboratory under well-maintained temperature conditions. This delay in regeneration was shown to be dependent on the planaria having a fixed orientation with respect to the magnetic field vectors. Results also indicate that this orientation-dependent transduction process does not result from Faraday induction but is consistent with a Ca2+ cyclotron resonance mechanism. Data interpretation also permits the tentative conclusion that the effect results from an inhibition of events at an early stage in the regeneration process before the onset of proliferation and differentiation. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 18 (1996), S. 825-834 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: X-linked agammaglobulinemia is a heritable immunodeficiency disease caused by a differentiation abnormality, resulting in the virtual absence of B Iymphocytes and plasma cells. The affected gene encodes a cytoplasmic protein tyrosine kinase, Bruton's agammaglobulinemia tyrosine kinase, designated Btk. Btk and the other family members, Tec, Itk and Bmx, contain five regions, four of which are common structural and functional modules that are found in other signaling proteins. Mutations affect all domains of the gene, but amino acid substitutions seem to be confined to certain regions. More than 150 unique mutations have been identified and are collected in a mutation database, BTKbase. Here we discuss the three-dimensional structural implications of such mutations and their putative functional role. Of special interest are mutations affecting the pleckstrin homology domain, as Btk is the only disease-associated protein so far reported to carry mutations in this particular module.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...