ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • promoter  (3)
  • Biochemistry and Biotechnology
  • Cell & Developmental Biology
  • 1995-1999  (4)
  • 1
    ISSN: 1573-5028
    Keywords: cassava ; caulimovirus ; CVMV ; GUS fusion ; promoter ; transgenic plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cassava vein mosaic virus (CVMV) is a double stranded DNA virus which infects cassava plants (Manihot esculenta Crantz) and has been characterized as a plant pararetrovirus belonging to the caulimovirus subgroup. Two DNA fragments, CVP1 of 388 nucleotides from position -368 to +20 and CVP2 of 511 nucleotides from position -443 to +72, were isolated from the viral genome and fused to theuidA reporter gene to test promoter expression. The transcription start site of the viral promoter was determined using RNA isolated from transgenic plants containing the CVMV promoter:uidA fusion gene. Both promoter fragments were able to cause high levels of gene expression in protoplasts isolated from cassava and tobacco cell suspensions. The expression pattern of the CVMV promoters was analyzed in transgenic tobacco and rice plants, and revealed that the GUS staining pattern was similar for each construct and in both plants. The two promoter fragments were active in all plant organs tested and in a variety of cell types, suggesting a near constitutive pattern of expression. In both tobacco and rice plants, GUS activity was highest in vascular elements, in leaf mesophyll cells, and in root tips.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: ammonium ; gene expression ; glutamine synthetase ; nodules ; positive element ; promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to identify important promoter elements controlling the ammonium-regulated expression of the soybean gene GS15 encoding cytosolic glutamine synthetase, a series of 5′ promoter deletions were fused to the GUS reporter gene. To allow the detection of positive and negative regulatory elements, a series of 3′ deletions were fused to a −90 CaMV 35S promoter fragment placed upstream of the GUS gene. Both types of construct were introduced into Lotus corniculatus plants and soybean roots via Agrobacterium rhizogenes-mediated transformation. Both spectrophotometric enzymatic analysis and histochemical localization of GUS activity in roots, root nodules and shoots of transgenic plants revealed that a strong constitutive positive element (SCPE) of 400 bp, located in the promoter distal region is indispensable for the ammonium- regulated expression of GS15. Interestingly, this SCPE was able to direct constitutive expression in both a legume and non- legume background to a level similar to that driven by the CaMV 35S full-length promoter. In addition, results showed that separate proximal elements, located in the first 727 bp relative to the transcription start site, are essential for root- and root nodule-specific expression. This proximal region contains an AAAGAT and two TATTTAT consensus sequences characteristic of nodulin or nodule-enhanced gene promoters. A putative silencer region containing the same TATTTAT consensus sequence was identified between the SCPE and the organ-specific elements. The presence of positive, negative and organ-specific elements together with the three TATTTAT consensus sequences within the promoter strongly suggest that these multiple promoter fragments act in a cooperative manner, depending on the spatial conformation of the DNA for trans-acting factor accessibility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: cassava ; caulimovirus ; cis elements ; GUS ; promoter ; transgenic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cassava vein mosaic virus (CsVMV) is a pararetrovirus that infects cassava plants in Brazil. A promoter fragment isolated from CsVMV, comprising nucleotides -443 to +72, was previously shown to direct strong constitutive gene expression in transgenic plants. Here we report the functional architecture of the CsVMV promoter fragment. A series of promoter deletion mutants were fused to the coding sequence of uidA reporter gene and the chimeric genes were introduced into transgenic tobacco plants. Promoter activity was monitored by histochemical and quantitative assays of β-glucuronidase activity (GUS). We found that the promoter fragment is made up of different regions that confer distinct tissue-specific expression of the gene. The region encompassing nucleotides -222 to -173 contains cis elements that control promoter expression in green tissues and root tips. Our results indicate that a consensus as1 element and a GATA motif located within this region are essential for promoter expression in those tissues. Expression from the CsVMV promoter in vascular elements is directed by the region encompassing nucleotides -178 to -63. Elements located between nucleotides -149 and -63 are also required to activate promoter expression in green tissues suggesting a combinatorial mode of regulation. Within the latter region, a 43 bp fragment extending from nucleotide -141 to -99 was shown to interact with a protein factor extracted from nuclei of tobacco seedlings. This fragment showed no sequence homology with other pararetrovirus promoters and hence may contain CsVMV-specific regulatory cis elements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 121-127 
    ISSN: 0730-2312
    Keywords: heme oxygenase ; stress protein ; overexpression ; oxidative injury ; endothelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heme oxygenase (HO-1) is a stress protein that has been suggested to participate in defense mechanisms against agents that induce oxidative injury such as hemoglobin/heme, hypoxia-ischemia and cytokines. Overexpression of HO-1 in endothelial cells (EC) might, therefore, protect against oxidative stress produced under these pathological conditions, by generation of CO, a vasodilator, and bilirubin, which has antioxidant properties that enhance blood vessel formation to counteract hypoxia-induced injury. A plasmid containing the cytomegalovirus promoter (pCMV) neomycin human HO-1 gene complexed to cationic liposomes, lipofectin, was used to transfect rabbit coronary microvessel EC. Cells transfected with human HO-1 gene demonstrated a twofold increase in HO activity and maintained a similar phenotype as in the nontransfected cells. Cell number in transfected cells with human HO-1 gene increased by about 45%, as compared to nontransfected or those transfected with control pCMV. Transfected and nontransfected EC revealed a similar response to basic fibroblast growth factor (bFGF) in capillary formation. However, transfected cells with the human HO-1 gene exhibited a twofold increase in blood vessel formation. The angiogenic response of EC to overexpression of HO-1 gene provides direct evidence that the inductive form of HO-1 following injury represents an important tissue adaptive mechanism for moderating the severity of cell damage produced in inflammatory reaction sites of hemorrhage, thrombosis and hypoxic-ischemia. Thus, HO-1 may participate in the regulation of EC activation, proliferation and angiogenesis. J. Cell. Biochem. 68:121-127, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...