ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (3)
  • Astrophysics
  • 1995-1999  (3)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 18 (1996), S. 363-369 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Maize develops separate male and female flowers in different locations on a single plant. Male flowers develop at the tip of the shoot in the tassel, and female flowers develop on the ears, which terminate short branches. The development of male flowers in tassels and female flowers in ears is the result of selective abortion of pistils or stamens, respectively, in developing florets. Genetic analysis has shown that stamen abortion and pistil abortion are under the control of two different genetic pathways. Local levels of the plant hormone gibberellic acid determine whether or not stamens are suppressed. Pistil abortion is under the regulation of the tassel seed genes, one of which has been shown to encode a short-chain alcohol dehydrogenase. The tassel seed genes play a role in regulating the fate of inflorescence meristems as well as pistil primordium fate.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 165 (1995), S. 261-272 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Recent studies have suggested that a labile transcriptional repressor protein is important in the regulation of pgp mRNA expression. However, cycloheximide (CHX) the protein synthesis inhibitor used, can increase mRNAs by either stabilizing the mRNA transcript or directly activating gene transcription. To determine whether CHX posttranscriptionally increased pgp mRNA, we compared the effect of CHX, which inhibits protein synthesis by stabilizing polysomes, with puromycin (PURO), which inhibits protein synthesis by polysome destabilization. In rat hepatocytes, CHX induced pgp2 mRNA, and the increase was proportional to the degree of protein synthesis inhibition. In contrast, despite almost complete inhibition of protein synthesis, PURO did not induce pgp2 mRNA. Further studies demonstrated that PURO pretreatment could block pgp2 mRNA induction by CHX. Likewise, in cultures of primary human hepatocytes CHX, but not PURO, induced MDR1 mRNA. A polymerase chain reaction assay was developed to assess whether CHX treatment altered the length of the 3′-untranslated region (UTR) of pgp2. CHX treatment time dependently increased the length of the pgp2 3′-UTR. To determine whether CHX acts as a transcriptional agonist, we performed nuclear run-off analysis and found no increase in pgp2 gene transcription compared to untreated control. Further, transcription studies were performed by transiently transfecting HepG2 cells with plasmids containing 5′ segments of human MDR1 fused with the reporter chloramphenicol acetyltransferase (CAT). These plasmids were not transcriptionally activated by CHX. In summary, our results cast doubt on the existence of a labile transcriptional repressor protein for pgp. Furthermore, these are the first studies to demonstrate that polysomal destabilization by PURO can block CHX induction of pgp. © 1995 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0749-503X
    Keywords: sphingolipids ; hydroxylase ; cytochrome b5 ; CSG1 ; CSG2 ; calcium ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Saccharomyces cerevisiae mutants lacking Scs7p fail to accumulate the inositolphosphorylceramide (IPC) species, IPC-C, which is the predominant form found in wild-type cells. Instead scs7 mutants accumulate an IPC-B species believed to be unhydroxylated on the amide-linked C26-fatty acid. Elimination of the SCS7 gene suppresses the Ca2+-sensitive phenotype of csg1 and csg2 mutants. The CSG1 and CSG2 genes are required for mannosylation of IPC-C and accumulation of IPC-C by the csg mutants renders them Ca2+-sensitive. The SCS7 gene encodes a protein that contains both a cytochrome b5-like domain and a domain that resembles the family of cytochrome b5-dependent enzymes that use iron and oxygen to catalyse desaturation or hydroxylation of fatty acids and sterols. Scs7p is therefore likely to be the enzyme that hydroxylates the C26-fatty acid of IPC-C. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...