ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (48)
  • Aircraft Propulsion and Power  (34)
  • Geophysics  (31)
  • 1995-1999  (113)
  • 1
    Publication Date: 2011-08-23
    Description: Arctic air masses have direct impacts on the weather and climatic extremes of midlatitude areas such as central North America. Arctic physical processes pose special and very important problems for global atmospheric models used for climate simulation and numerical weather prediction. At present, the observational database is inadequate to support research aimed at overcoming these problems. Three interdependent Arctic field programs now being planned will help to remedy this situation: SHEBA, which will operate an ice camp in the Arctic for a year-, ARM, which will supply instruments for use at the SHEBA ice camp and which will also conduct longer-term measurements near Barrow, Alaska; and FIRE, which will conduct one or more aircraft campaigns, in conjunction with remote-sensing investigations focused on the SHEBA ice camp. This paper provides an introductory overview of the physics of the Arctic from the perspective of large-scale modelers, outlines some of the modeling problems that arise in attempting to simulate these processes, and explains how the data to be provided by the three field programs can be used to test and improve large-scale models.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society (ISSN 0003-0007); Volume 79; No. 2; 197-219
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: The objectives, design and results of the sensor systems for the combined sporadic structures and layers (CSSL) payload are analyzed. The CSSL main objectives were to: validate current models of mesospheric sodium chemistry; explore the relationship between turbulence and Na fluctuations; and to explore the relationship between high latitude electric fields and the formation of Na anomalies.
    Keywords: Geophysics
    Type: ; 299-304
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204818 , NAS 1.26:204818 , Bulletin of the American Meteorological Society (ISSN 0003-0007); 77; 4; 653-672
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-1998-208655 , NAS 1.15:208655 , SAE-985556 , E-11375 , 1998 World Aviation Congress and Exposition; Sep 28, 1998 - Sep 30, 1998; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-1998-206562 , H-2269 , NAS 1.15:206562 , AIAA Paper 98-3715 , Propulsion; Jul 13, 1998 - Jul 15, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-1998-208481 , E-11255 , NAS 1.15:208481 , AIAA Paper 98-3757 , Propulsion; Jul 12, 1998 - Jul 15, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-1998-208482 , E-11257 , NAS 1.15:208482 , AIAA Paper 98-3756 , Joint Propulsion Conference; Jul 12, 1998 - Jul 15, 1998; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include N2O, HNO3, and ClONO2 from the cryogenic limb array etalon spectrometer (CLAES), version 7 (v.7), and temperature, methane, ozone, H2O, HCl, NO and NO2 from the halogen occultation experiment (HALOE), version 18. The analysis is carried out for the UARS data obtained between January 1992 and September 1994 in the 100-to 1-mbar (approx. 17-47 km) altitude range and over 10 degrees latitude bins from 70 S to 70 N. The spatiotemporal evolution of aerosol surface area density (SAD) is adopted from analysis of the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD, and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOy) is obtained by three different methods: (1) as a sum of the UARS-measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NOy correlation, and (3) from the CH4-NOy correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated monthly averaged NOx/NOy ratios and the NO, NO2, and HNO3 profiles are compared with the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years, such as recovery of NOx after the eruption, their seasonal variability and vertical profiles. However, the model underestimates the NO2 content, particularly in the 30- to 7-mbar (approx.23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground-based measurements at 45 S and 45 N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at midlatitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 S, suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.
    Keywords: Geophysics
    Type: Paper-1999JD900024 , Journal of Geophysical Research (ISSN 0148-0227); 104; D7; 8247-8262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.
    Keywords: Geophysics
    Type: Nineteenth International Laser Radar Conference; 11-14; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The next generation of subsonic engines can be expected to continue the historical trend towards increased thrust to weight (T/W) and decreased specific fuel consumption (SFC). Development programs currently underway throughout the gas turbine industry such as DOD's Integrated High Performance Turbine Engine Technology (IHPTET), and more recently NASA's Advanced Subsonic Transport (AST) programs, have altered these trends in both pace and magnitude. Advanced seals and sealing technologies have become a prominent part of these efforts due to the large potential performance gains which can be realized. Allison has recently completed a study for NASA the goal of which was to quantize the potential performance benefits which might accrue through the use of advanced seals in future subsonic gas turbine engines. For the study, two engines where analyzed, a small turboshaft and a larger turbofan engine to help assess the effect of engine size on the results. Engines were analyzed stage by stage with the most sensitive areas highlighted. Leakage characteristics for advanced seals were then substituted into secondary airflow models, and the leakage reductions documented. These leakage reductions were then converted to changes in performance, i.e. increased range, decreased takeoff gross weight, etc. and presented. It was found that the development and use of a realtively few advanced seals, less than 5, could for example reduce SFC by 10% or more.
    Keywords: Aircraft Propulsion and Power
    Type: Seals Code Development Workshop; 327-336; NASA-CP-10181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...