ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • Space Radiation  (2)
  • Aircraft Design, Testing and Performance
  • Astronomy
  • 1995-1999  (2)
  • 1
    Publication Date: 2019-07-10
    Description: In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.
    Keywords: Space Radiation
    Type: NASA/TP-1999-209202 , S-846 , NAS 1.60:209202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: In 1994 the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a joint collaboration with the U.S. Department of Energy (DOE). The AMS program was chartered to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments which were evolving from the Office of Space Science. The first such experiment to come forward was ACCESS in 1996. It was proposed as a new mission concept in space physics to place a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the ISS, and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's sub-orbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer-review. This process is still on-going and the Accommodation Study presented here will discuss the baseline definition of ACCESS as we understand it today. Further detail on the history, scope, and background of the study is provided in Appendix A.
    Keywords: Space Radiation
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...