ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (3)
  • Heliospheric Radio Emissions  (1)
  • ASTROPHYSICS
  • 1995-1999  (4)
Collection
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 78 (1996), S. 53-66 
    ISSN: 1572-9672
    Keywords: Heliospheric Radio Emissions ; Heliosphere ; Heliopause ; Termination Shock
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract For nearly fifteen years the Voyager 1 and 2 spacecraft have been detecting an unusual radio emission in the outer heliosphere in the frequency range from about 2 to 3 kHz, Two major events have been observed, the first in 1983–84 and the second in 1992–93. In both cases the onset of the radio emission occurred about 400 days after a period of intense solar activity, the first in mid-July 1982, and the second in May–June 1991. These two periods of solar activity produced the two deepest cosmic ray Forbush decreases ever observed. Forbush decreases are indicative of a system of strong shocks and associated disturbances propagating outward through the heliosphere. The radio emission is believed to have been produced when this system of shocks and disturbances interacted with one of the outer boundaries of the heliosphere, most likely in the vicinity of the the heliopause. The emission is believed to be generated by the shock-driven Langmuir-wave mode conversion mechanism, which produces radiation at the plasma frequency (f p ) and at twice the plasma frequency (2f p ). From the 400-day travel time and the known speed of the shocks, the distance to the interaction region can be computed, and is estimated to be in the range from about 110 to 160 AU.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: During the Galileo inbound pass through the Io torus the plasma wave insturment detected intervals of enhanced whistler-mode emissions.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Galileo plasma wave instrument has identified a narrow (in frequency) attenuation band in the hectometric emission that varies in frequency with system 3 longitude. It is possible to model this emission band assuming a high-latitude cyclotron source region with emission that is efficiently attenuated when the ray path is nearly tangent to an L shell that is close to the Io flux tube. The data suggest that the mechanism for attenuating the emission is very efficient, with the ratio of attenuated to unattenuated emission I/I(sub o) 〈 0.02, and not a strong function of frequency. In this paper we demonstrate that incoherent scattering alone cannot explain the attenuation lane, which does not preclude coherent scattering by uncertain processes. We find rather that the source of attenuation is consistent with near-grazing incidence reflection of emission from an L shell that is near the Io flux tube (a caustic surface).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Paper-1999RS900036 , Radio Science (ISSN 0048-6604); 34; 4; 1005-1012
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: During two intervals in 1999, simultaneous observations of Jupiter's decametric and hectometric radio emissions were made with the Cassini radio and plasma wave instrument (RPWS) and the radio and plasma wave instrument (WAVES) on the Wind spacecraft in Earth orbit. During January, the Jovian longitude difference between the two spacecraft was about 5 deg, whereas for the August-September Earth flyby of Cassini, the angle ranged from 0 deg to about 2.5 deg. With these separations, the instantaneous widths of the walls of the hollow conical radiation beams of some of the decametric arcs were measured suggesting that the typical width is approximately 2 deg. The conical beams seem to move at Io's revolution rate rather than with Jupiter's rotation rate. Additionally, some of the non-arc emissions have very narrow and quite peculiar beamwidths.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geophysical Research
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...