ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Likelihood  (2)
  • 78.30  (1)
  • 1995-1999  (3)
  • 1
    ISSN: 1432-0649
    Keywords: 78.30 ; 82.80
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A single-pulse spontaneous Raman scattering apparatus, based on a flashlamp-pumped dye laser, was used to determine the concentrations of the major species and the temperature in turbulent H2/N2/air jet diffusion flames. The concentrations of nitric oxide were simultaneously measured by Laser-Induced Fluorescence (LIF) after excitation of theA 2 Σ +−X 2 Π transition with a Nd: YAG-pumped dye laser. Some fundamentals of the employed methods, including the calibration procedure, quenching corrections, and accuracy are discussed. Besides a detailed study of the experimental technique, a main goal of the presented investigations was the generation of comprehensive data sets of high accuracy from well-defined turbulent flames which allow for a quantitative comparison with model calculations. Two flames with different fuel dilution and Reynolds numbers were investigated in a pattern of typically 100 measuring locations each comprising 300 single shots. In addition, four flames with different flow velocities but same fuel composition were compared with respect to their temperature and NO concentration profiles. The results show that differential diffusion plays an important role in these flames, especially near the flame base, where the temperature is increased above the adiabatic flame temperature and deviations from adiabatic equilibrium are large. The correlations between NO and mixture fraction and NO and temperature reveal characteristic features of the different flames.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 1299-1309 
    ISSN: 1432-2242
    Keywords: Likelihood ; Peeling ; Pedigree with loops ; Segregation analysis ; Linkage analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This paper presents a new approximation to the likelihood for a pedigree with loops, based on cutting all loops and extending the pedigree at the cuts. An opimum loop-cutting strategy and an iterative extension technique are presented. The likelihood for a pedigree with loops is then approximated by the conditional likelihood for the entire cut-extended pedigree given the extended part. The approximate likelihoods are compared with the exact likelihoods obtained using the program MENDEL for several small pedigrees with loops. The approximation is efficient for large pedigrees with complex loops in terms of computing speed and memory requirements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 1054-1063 
    ISSN: 1432-2242
    Keywords: Arbitrary pedigrees with loops ; Recursive algorithm ; Peeling ; Likelihood ; Cutting loops
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This paper presents a recursive algorithm to approximate the likelihood in arbitrary pedigrees with loops. The algorithm handles any number and nesting levels of loops in pedigrees. The loops are cut as described in a previous publication and the approximate likelihood is simultaneously computed using the cut pedigree. No identification of a loop in the pedigree is necessary before the algorithm is applied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...