ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • (toxic) volatile organic compounds (VOC)  (2)
  • Ab initio calculation  (1)
  • 1995-1999  (3)
  • 1
    ISSN: 1432-2234
    Keywords: Key words: DCMU ; Diuron ; Conformational analysis ; Solvent effect ; Ab initio calculation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. In the present work, the conformational equilibrium for the herbicide diuron (DCMU) has been investigated using high level ab initio calculations. The solvent effect was included through two different continuum models: (1) the real cavity IPCM method and (2) the standard dipole Onsager model SCRF. The effect due to solute-solvent hydrogen-bond interactions was analyzed considering a hybrid discreet-continuum model. At the Hartree-Fock level, the gas phase results showed that only the trans forms (A and B) are present in the equilibrium mixture, with the relative concentrations found to be 33% (A) and 67% (B) (HF/6-311+G**//6-31G**). When the electronic correlation effect is included (MP2/6-31G*//HF/6-31G*), a relative stabilization of the cis forms was observed, with the conformational distribution calculated as 38% (A), 50% (B), 6% (C) and 6% (D). The trans conformations were found to be completely planar, which has been considered to be a prerequisite for the herbicide binding. In water solution, the trans conformation A should be the most abundant conformer, the IPCM and SCRF values being ca. 100% and ca. 85% respectively. The IPCM calculations with the isodensity level set to 0.0005 present a conformational distribution close to that obtained from the hybrid model [92% (A) and 8% (B)], which has been considered our best solvent approach. Regarding the biological action of urea-type herbicides, the results presented here are important, because some QSAR studies have suggested that the partition coefficient is related to the herbicide activity, so the conformational equilibrium may play a role in the biological action.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 90-95 
    ISSN: 0006-3592
    Keywords: membrane-attached biofilms ; extractive membrane bioreactor (EMB) ; (toxic) volatile organic compounds (VOC) ; aerobic biodegradation of dichloroethane ; optimal biofilm thickness ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article reports a study of the performance of membrane-attached biofilms grown in a single tube extractive membrane bioreactor (STEMS) used for the treatment of a synthetic wastewater containing a toxic VOC (1,2-dichloroethane [DCE]). Mass balances show that complete mineralization of DCE was achieved, and that the biofilms were effective in reducing air stripping to negligible levels. Experimental results are presented showing the evolution over time of biofilm thickness and its influence on the flux of DCE across the membrane. It has been found that a trade-off exists between the positive influence of biofilms in reducing air-stripping of DCE, and the negative influence of biofilms in reducing DCE flux across the membrane. These considerations lead to an optimal biofilm thickness in the region of 200 to 400 μm being recommended for this system. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 82-89 
    ISSN: 0006-3592
    Keywords: novel biofilm thickness measurement technique ; membrane attached biofilms ; extractive membrane bioreactor ; (toxic) volatile organic compounds (VOC) ; aerobic biodegradation of dichloroethane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article reports a novel nondisruptive technique for measuring the thicknesses of membrane-attached biofilms in situ, using a single tube extractive membrane bioreactor (STEMB). The biodegradation of a toxic volatile organic compound (VOC) (1,2-dichloroethane [DCE]) by Xanthobacter autotrophicus GJ10 has been used as a model system to develop the technique. The results give information on the biomass-silicone rubber attachment phenomena, and on the development over time of biofilms growing on the silicone membrane, without disrupting operation. Experimental results are presented showing the evolution over time of biofilm thickness, and also the density of biofilms for four experimental runs. The hydrodynamic conditions on the biomedium side of the membrane were found to influence the initial attachment phenomena and subsequent biofilm growth. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...