ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 10 (1998), S. 528-534 
    ISSN: 0899-0042
    Keywords: chiral inversion ; ibuprofen ; ketoprofen ; flurbiprofen ; indoprofen ; suprofen ; fenoprofen ; metabolism of 2-arylpropionic acids ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The fungus Cordyceps militaris has been previously shown to be capable of inverting the chirality of 2-phenylpropionic acid from its (R)-enantiomer to its (S)-antipode. The structure of this compound is similar to the 2-arylpropionic acid non-steroidal anti-inflammatory drugs, which have also been reported to undergo a similar chiral inversion process in mammals and man. We report here an investigation into the substrate specificity of the enzyme system present in C. militaris using pure enantiomers and racemates of ibuprofen and ketoprofen and racemates of indoprofen, suprofen, flurbiprofen, and fenoprofen and the structurally related compounds 2-phenylbutyric acid and 2-phenoxypropionic acid as substrates, using optimised incubation conditions developed for the inversion of 2-phenylpropionic acid. The results demonstrated that C. militaris is capable of inverting the chirality of all the compounds investigated, which suggests that the active sites of the enzymes are very flexible with regard to the molecular dimensions of the substrate molecule and the spatial occupation of the groups surrounding the chiral centre. Metabolism of all the substrates was observed but the rate of metabolism varied extensively depending on the substrate. Achiral HPLC analysis was used to detect any potential metabolites and the results suggested that the site of the metabolism appeared to be at the aliphatic side groups only, with the aromatic ring being left intact in all cases. These results suggest that C. militaris could be a valuable tool in the investigation of the prospective metabolic fates of new 2-arylpropionic acids during their development. Chirality 10:528-534, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0899-0042
    Keywords: microbial chiral inversion ; 2-phenylpropionic acid ; kinetic isotope effect ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Previous investigations have described the development of nongrowing suspension of Verticillium lecanii as a microbial model of the mammalian chiral inversion of the 2-arylpropionic acids (2-APAs). Mechanistic studies in mammals have shown that inversion involves loss of the α-methine proton but retention of the original atoms at the β-methyl position, and a mechanism has been proposed involving enzymatic epimerisation of acyl-CoA thioester derivatives of the substrate. Inversion of the 2-APAs by V. lecanii exhibits extensive intersubstrate variation in the presence, rate, extent, and direction of inversion, which are different from those observed in mammalian systems, possibly indicating differences in the mechanism of inversion between mammalian and microbial cells. This study involved the investigation of proton/deuterium exchange by 1H-nuclear magnetic resonance following incubation of deuterated derivatives of 2-phenylpropionic acid (2-PPA), a model compound, in cell suspensions of V. lecanii and incubation of undeuterated 2-PPA in cell suspensions containing D2O. The results indicated that the inversion of 2-PPA by V. lecanii also involved exchange of the α-methine proton but complete retention on the original atoms at the β-methyl position. No kinetic deuterium isotope effect was observed, indicating that loss of the α-methine proton is not the rate-limiting step of the inversion process. This suggests that the observed differences between microbial and mammalian systems probably involve the stereoselective acyl-CoA thioester formation step and not the subsequent epimerisation of the resultant diastereomers. Chirality 9:254-260, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 524-535 
    ISSN: 0730-2312
    Keywords: caveolae ; caveolin-1 ; tyrosine kinase ; cell transformation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Members of the nonreceptor tyrosine kinase family appear to be targeted to caveolae membrane. We have used a Rat-1 cell expressing a temperature sensitive pp60v-src kinase to assess the initial changes that take place in caveolae after kinase activation. Within 24-48 h after cells were shifted to the permissive temperature, a set of caveolae-specific proteins became phosphorylated on tyrosine. During this period there was a decline in the caveolae marker protein, caveolin-1, a loss of invaginated caveolae, and a 70% decline in the sphingomyelin content of the cell. One of the phosphorylated proteins was caveolin-1 but it was associated in coimmunoprecipitation assays with both a 30 kDa and a 27 kDa tyrosine-phosphorylated protein. Finally, the cells changed from having a typical fibroblast morphology to a rounded shape lacking polarity. In light of the recent evidence that diverse signaling events originate from caveolae, pp60v-src kinase appears to cause global changes to this membrane domain that might directly contribute to the transformed phenotype. J. Cell. Biochem. 71:524-535, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...