ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • transcription factors  (2)
  • AML/CBF transcription factors  (1)
  • Wiley-Blackwell  (3)
  • 1995-1999  (3)
Collection
Publisher
Years
  • 1995-1999  (3)
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 58 (1995), S. 372-379 
    ISSN: 0730-2312
    Keywords: ATF ; Sp1 ; transcription factors ; cell cycle ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The proximal promoter of the human H4 histone gene FO108 contains two regions of in vivo protein-DNA interaction, Sites I and II. Electrophoretic mobility shift assays using a radiolabeled DNA probe revealed that several proteins present in HeLa cell nuclear extracts bound specifically to Site I (nt-125 to nt-86). The most prominent complex, designated HiNF-C, and a complex of greater mobility, HiNF-C′, were specifically compatable by an Sp1 consensus oligonucleotide. Fractionation of HiNF-C using wheat germ agglutinin affinity chromatography suggested that, like Sp1, HiNF-C contains N-acetylglucosamine moieties. Two minor complexes of even greater mobility, designated HiNF-E and F, were compatable by ATF consensus oligonucleotides. A DNA probe carrying a site-specific mutation in the distal portion of Site I failed to bind HiNF-E, indicating that this protein associated specifically to this region. UV cross-linking analysis showed that several proteins of different molecular weights interact specifically with Site I. These data indicate that Site I possesses a bipartite structure and that multiple proteins present in HeLa cell nuclear extracts specifically with Site I sequences.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: AML-3 ; transcription factors ; partitioning ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The subnuclear location of transcription factors may functionally contribute to the regulation of gene expression. Several classes of gene regulators associate with the nuclear matrix in a cell type, cell growth, or cell cycle related-manner. To understand control of nuclear matrix-transcription factor interactions during tissue development, we systematically analyzed the subnuclear partitioning of a panel of transcription factors (including NMP-1/YY-1, NMP-2/AML, AP-1, and SP-1) during osteoblast differentiation using biochemical fractionation and gel shift analyses. We show that nuclear matrix association of the tissue-specific AML transcription factor NMP-2, but not the ubiquitous transcription factor YY1, is developmentally upregulated during osteoblast differentiation. Moreover, we show that there are multiple AML isoforms in mature osteoblasts, consistent with the multiplicity of AML factors that are derived from different genes and alternatively spliced cDNAs. These AML isoforms include proteins derived from the AML-3 gene and partition between distinct subcellular compartments. We conclude that the selective partitioning of the YY1 and AML transcription factors with the nuclear matrix involves a discriminatory mechanism that targets different classes and specific isoforms of gene regulatory factors to the nuclear matrix at distinct developmental stages. Our results are consistent with a role for the nuclear matrix in regulating the expression of bone-tissue specific genes during development of the mature osteocytic phenotype. J. Cell. Biochem. 66:123-132, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: gene expression ; AML/CBF transcription factors ; nuclear matrix ; cancer ; nuclear domains ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Functional interrelationships between components of nuclear architecture and control of gene expression are becoming increasingly evident. In this article we focus on the concept that association of genes and cognate transcription factors with the nuclear matrix may support the formation and/or activities of nuclear domains that facilitate transcriptional regulation. Several lines of evidence are consistent with the concept that association of transcription factors with the nuclear matrix may be obligatory for fidelity of gene expression and maximal transcriptional activity. The identification of specific regions of transcription factors that are responsible for intranuclear trafficking to nuclear matrix-associated sites that support transcription, reinforces the linkage of nuclear structure to regulation of genes. CBFA2/AML-1 and CBFA1/AML-3 provide paradigms for directing gene regulatory factors to RNA polymerase II containing foci within the nucleus. The implications of modifications in the intranuclear trafficking of transcription factors for developmental and tissue-specific control, as well as for aberrations in gene expression that are associated with cancer and neurological disorders, are addressed. J. Cell. Biochem. 70:200-212, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...